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Moving Horizon Strategies for the Constrained Monitoring and

Control of Nonlinear Discrete-Time Systems

Christopher V. Rao
Under the supervision of Professor James B. Rawlings
At the University of Wisconsin—-Madison

The rational design of process monitoring and control systems requires the solution of dynamic
programs. With a few notable exceptions, dynamic programs are difficult, in not impossible, to solve.
The difficulty arises in what Bellman called the “curse of dimensionality”: the computational complexity
scales exponentially in the problem dimensions. One approximate strategy that circumvents the compu-
tational difficulties associated with dynamic programming while still retaining many desirable properties
is the moving horizon approximation. Moving horizon approximations are optimization based strategies
that approximate the dynamic program with a series of open-loop optimal control problems. Unlike
other strategies, moving horizon approximations can handle explicitly nonlinear differential algebraic
equations and inequality constraints. In this dissertation, we investigate the moving horizon approxima-
tion for the constrained process monitoring (moving horizon estimation) and control (model predictive
control) of nonlinear discrete-time systems. A framework is proposed for analyzing the stability proper-
ties of the moving horizon approximation. This framework allows us to derive sufficient conditions for
stability and propose practical algorithms for online implementation.

In addition to the theoretical results, practical issues regarding constraints, computation, and
robustness are studied. We discuss issues regarding inequality constraints in process monitoring. By
incorporating prior knowledge in the form of inequality constraints, one can significantly improve the
quality of state estimates for certain problems. We demonstrate how inequality constraints provide a
flexible tool for complementing process knowledge and a strategy also for model simplification. For
control, techniques are developed for handling inequality constraints active at steady state, a case that
has not been treated in previous model predictive control theory

Computational issues are addressed. Stable suboptimal algorithms for constrained estimation
and control are proposed that do not require an optimal solution: rather, a feasible solution suffices.
Issues related to formulating model predictive control as a linear program are discussed. A computa-
tionally efficient interior point algorithm is developed for the model predictive control of large process
systems. The cost of this approach is linear in the horizon length, compared with cubic growth for a
naive approach. We also investigate strategies for further decomposing the problem structure in sheet
and film forming processes.

The issue of output feedback and robustness are addressed by formulating MPC as a dynamic
game. The game formulation allows us to obtain a separation for output feedback and prove that the
closed-loop system has finite lo-gain. Furthermore, the added cost associated with formulating MPC as
a dynamic game is negligible; the resulting problem is a quadratic program, though the optimization
problem is no longer sparse. These results are extremely conservative, however, and limitations of the
proposed strategy are discussed.
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Chapter 1

Introduction

The rational design of process monitoring and control strategies requires the solution of an optimal
control problem. By rational design, we mean design by (sub)-optimal satisfaction of some specified
objective and constraints. The characteristic features of these design problems are that the decisions are
made in stages and, more importantly, with limited knowledge. Under these circumstances, dynamic
programming provides the natural solution technique for these classes of problems. Without going into
any detail (c.f. Bertsekas (19954, 1995b)), dynamic programming recursively decomposes the overall
problem by ranking decisions on the present cost and future (past) expected cost, assuming optimal de-
cisions are made for the subsequent (previous) stages. What distinguishes dynamic programming from
classical methods is that it is constructive. Unlike classical control theory rooted in operator theory
and complex analysis, which provides only quantitative tests such as stability, dynamic programming
generates sufficient conditions for optimal recursive state estimators and feedback policies. Since the
1950’s, control engineers have recognized the potential of dynamic programming. The string of applica-
tions is impressive, in particular linear quadratic control (LQG) and Kalman filtering. Even strategies
once thought to transcend optimal control and dynamic programming such as H, control have, in their
most general forms, been recast in the optimal control framework (c.f. (Bagar and Bernhard 1995)).
While it is easy to extol virtues of dynamic programming, there is one significant caveat: with a few
notable exceptions, dynamic programs are difficult, if not impossible, to solve. The difficulties arise in
what Bellman called the “curse of dimensionality”: the computational complexity scales exponentially
in the problem dimensions, and, as a result, limits the size of problems one can solve with modest com-
putational recourses. Rather than despair, control engineers have introduced a host of strategies that
allows one to approximately solve dynamic programs while still retaining many desirable properties. One
generic and powerful strategy is the moving horizon approximation.

Moving horizon approximations arise in both process monitoring (moving horizon estimation)
and control (model predictive control). The key idea behind the moving horizon approximation is to
reformulate the dynamic program as a sequence of finite-horizon, open-loop optimal control problems,
thereby restricting the algorithm’s attention to the encountered sequence of states rather than the
entire state space. The payoff is that a potentially intractable dynamic program is replaced with a
sequence of computationally tractable open-loop optimal control problems. Whereas it is difficult, if
not impossible, to solve dynamic programs, there exists a host of numerical strategies for solving finite-
horizon open-loop optimal control problems (c.f. (Polak 1997)). The tradeoff is that the optimal value
function is lost. However, constructing the value function is what complicates the solution of dynamic
programs. In process monitoring, the optimal value function, or arrival cost, generates the conditional
probability density function necessary for constructing recursive state estimators. If one considers only
batch estimation problems, then this limitation is not problematic. However, if one wants to process
information continuously or make decisions based on inferences, then a representation of the value
function is necessary. In control, the value function, or cost to go, generates the optimal feedback policy.
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Without the value function the feedback aspect of the solution is lost: instead of optimizing over policies,
fixed control decisions are made. The implications of an open-loop strategy become apparent if we
consider the issue of robustness and stochastic control. Of course, model predictive control is a feedback
policy, but it is not an optimal feedback policy. An open question is how far model predictive control is
from an optimal feedback policy. Current theory states that model predictive control performs no worse
than pure open-loop control (Bertsekas 1972). Nevertheless, given our current repertoire of numerical
algorithms, moving horizon approximations are practical methods for generating nearly optimal policies
for problems involving inequality constraints and nonlinear dynamics.

Controlling nonlinear dynamics is undoubtedly a challenging and important problem, garnering
tremendous interest from control theorists. However, one can legitimately argue that designing moni-
toring and control strategies that explicitly account for hard constraints on the controls and states has
far greater impact in practice. Many applications require the satisfaction of constraints; for example,
valves saturate and the controller needs to maintain the state variables, such as velocity, temperature,
concentration, or pressure, within certain limits to operate the process safely. Furthermore, operation
at constraints is so common that it may be regarded as the rule rather than the exception in chemical
process operations. As a result model predictive control (also known as receding horizon control in the
automatic control vernacular) with linear models is popular in the chemical process industries. There
are over two thousand documented commercial applications, and nearly all refineries implement some
form of model predictive control, the most popular being DMC and IDCOM. With the clarity gained
by hindsight, the raison d’etre for model predictive control is the ability to handle constraints on the
control and state variables. Though less mature than model predictive control, constraints motivate
also the use of moving horizon estimation. While documented applications of moving horizon estimation
and model predictive control with nonlinear models are gradually beginning to appear (c.f. (Russo and
Young 1999) and (Qin and Badgwell 1998)) and show no signs of abating, hard constraints will continue
to motivate most implementations of model predictive control and moving horizon estimation.

1.0.1 Process Monitoring and Moving Horizon State Estimation

Monitoring the dynamic behavior of a chemical process necessitates continual inferences from the avail-
able measurements about the evolving state of the process. To handle the ever growing influx of data,
one needs some form of data compression to keep the problem size manageable. If one tackles the prob-
lem using probability theory, then one achieves compression through the use of a conditional probability
density function generated by the solution of Kolmogorov’s forward equation. If one instead solves the
problem using deterministic least squares or game theory, then compression is achieved with the arrival
cost obtained from the solution of a forward dynamic program. Both problems are mathematically
equivalent even though they originate from different perspectives, and both are impossible to solve,
analytically or numerically, in general, with the exception of linear unconstrained systems where one
obtains a Kalman or H, filter. Moving horizon estimation (MHE) bypasses the compression problem
by considering only a fixed amount of data. The basic strategy is to estimate the state using a moving
and fixed-size window of data. When a new measurement becomes available, the oldest measurement
is removed from the data window and the newest measurement is added. The problem size of the es-
timation problem is bounded, therefore, by looking at only a subset of the available information. This
strategy is obviously fraught with peril (otherwise, why fuss with compression). The reason is simple:
unless judiciously constructed, fixed-horizon estimators may result in poor or, in the case of instability,
catastrophic performance. However, we are able to construct stable moving horizon estimators that
approach optimal performance. Furthermore, because MHE is formulated as an optimization problem,
inequality constraints are a natural addition to the estimator.

As with control, the ability to handle inequality constraints explicitly is what makes moving
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horizon estimation attractive. One often has additional information about the process in the form of
inequality constraints. For example, many process variables, such as concentrations, are positive. Also, in
many practical situations we are able to provide hard bounds on the disturbance and state variables based
on prior information, operating experience, and physical laws. In probabilistic terms, constraints may
be used to model random variables with truncated or state-correlated probability densities. Constraints
also allow the use of simplified or approximate models, where the inequality constraints complete the
conservation laws of interest.

1.0.2 Model Predictive Control

A standard problem in control is to design a feedback law that minimizes an objective over an infinite
horizon. The optimal solution to this problem can be obtained in principle by solving the Hamilton-
Jacobi-Bellman (HJB) equation (the dynamic program that arises in control). This often is a difficult
task. One exception is when the system is linear, the objectives are quadratic, and there are no hard
constraints on the inputs or states. In this case, the optimal cost function can be parameterized as
a symmetric matrix, and the feedback law reduces to a linear quadratic regulator. When either of
these conditions is violated, general procedures for solving the HJB equation do not exist. Model
prediction control (MPC), or equivalently receding horizon control, is a constructive optimization based
strategy that avoids solving the HJB equation by repetitively solving an open-loop optimal control
problem instead. This strategy is also referred to by the oxymoron, open-loop feedback control (e.g.
(Dreyfus 1962)). While lacking the power and elegance of a closed-loop controller obtained from dynamic
programming, model predictive control is a practical strategy that exploits the availability of inexpensive
high-performance desktop computers.

Many issues and temptations arise in the design and implementation of model predictive control.
A prime issue of importance is stability: optimal controllers are not necessarily stable. Care must be
taken to ensure stability. Other important issues include target calculations, disturbance modeling,
infeasibility, and computation. Model predictive control also tempts the engineer with designs that may
yield nonintuitive results and tuning difficulties, such as linear programming formulations.

1.0.3 Uncertainty and Robustness

One implements a control system in order to introduce regulatory feedback in a process. Feedback
allows for design flexibility and adaptivity. It improves the process’s ability to attenuate exogenous
(downstream) variations and allows the process to recover autonomously from unforeseen events and
disruptions. This robustness offers tremendous benefit as operating procedures and conditions inevitably
evolve from the original design objectives. One cannot imagine a competitive alternative to feedback
in accounting for uncertainty in designs. The power of dynamic programming is that it generates
sufficient conditions for an optimal feedback policy. As mentioned already, moving horizon strategies
lack the feedback character of dynamic programming solutions. The payoff is obviously that we now
have something that we can solve. However, if we treat uncertainty explicitly in our formulation of
model predictive control, then the tradeoff become immediately obvious.

There are two popular alternatives for making decision with incomplete knowledge: the stochastic
(or Bayes) solution and the minimax solution (c.f. (Arrow 1951)). Although one is rooted in probability
theory and the other in game theory, the tangible difference in their representations of the uncertainty,
both provide constructive procedures for designing controllers robust to uncertainty. By not accounting
for feedback, the performance and viability of model predictive control in stochastic or minimax optimal
control problems are limited. For example, in minimax optimal control, existence conditions are far more
conservative for open-loop control than for closed-loop control (i.e. dynamic programming). Uncertainty,
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acting as an adversary, can easily choose a disturbance that trumps the fixed control. Hence, for a
solution to exist with open-loop control, the magnitude of the disturbances needs to be small. With a
feedback policy, however, the controller can always compensate for any disturbance, because the dynamic
programming solution implicitly accounts for all possible scenarios.

In practice these technical issues are less important, because model predictive control is a feed-
back policy. Even though it is not an optimal policy, the performance is quite good as evidenced by its
popularity among process control engineers. The problems arise when one directly includes uncertainty
in the control design. The motivation for doing so is to guarantee certain stability margins in the design.
Stability margins are difficult to quantify for arbitrary nonlinear controllers, so often the only way to
ensure a stability margin is to include the specification a priori in the design.

1.1 Dissertation Overview

In this dissertation we investigate moving horizon approximations for systems described by nonlinear
difference equations of the form

Tp4+1 = f($k7uk7wk)7
yr = h(zk) + ok,

where it is known that the state of system x, control uy, disturbance wy, and measurement noise vy,
satisfy the following constraints

2 €X, up €U, wp €W, v, €V.

Our goal is to approximate the dynamic programs that arise in regulation and estimation using open-loop
optimal control. If we consider control, then the optimal regulator is obtained from the solution, assuming
it exists, of the following backward dynamic program (i.e, the Hamilton-Jacobi-Bellman equation)

V(z,w) = min{l(v,z) + V(f(z,u,w)) : f(z,u,w) €X},

where the (stationary) feedback policy is given by
w(z,w) = argmeiur} {l{u,z) + V(f(z,u,w)) : f(z,u,w) € X}.

The moving horizon approximation of the optimal regulator is obtained by repetitively solving the
following open-loop optimal control problem

N—1 Tg=2
min D Uuk, o) + Flan) : aigr = f(@n,up,wr) o - (1.1)
{ur}r—o eunN k=0
zr € X

If we let {u}(z,{wy})}noy denote the solution to (1.1), then we define model predictive control as the
feedback policy

/.L(.’L’,U)) = US(-T, {wk})'

If we consider estimation, then the optimal (recursive) estimator is determined from the solution of the
following forward dynamic program

z = f (2, up, w)
Zk-i-l(w:ukayk) =z€§1§niul;l€W L(w7v)+zk(z) : f(Z,Uk,'LU) eX )
’ yr —h(z) €V



where the optimal estimate is given by
Tpy1 = argmin Zg (2, g, Yk )-
zeX

The moving horizon approximation of the optimal estimator is obtained by repetitively solving the
following open-loop optimal control problem

T-1 X zp € X, u, €U
rt min rt Z L(wk,vk) + ZT,N(wT,N) D Tyl = f(mk,uk,wk) . (12)
toshir_ o fwehizr v | p=T_N yr — h(zr) €V

If we let {a}({ur}, {vs})}—r_n and {wi({ur},{yx})};—7_n denote the solution to (1.2), then the
moving horizon estimate is given by

&r = o7 ({ur}; {yx})-

Most of this dissertation is directed towards deriving sufficient conditions for stability, though
practical and computational issues are also discussed. A major theme is the notion of the cost to go V (+)
and the arrival cost Z(-). These concepts from dynamic programming provide the key result of this
dissertation—a set of dual inequalities for the terminal penalty F(-) in control and the initial penalty Zj(-)
in estimation sufficient to guarantee the stability of the moving horizon approximation. We specialize
these results to the case when the model is linear, the objectives are quadratic, and the inequality
constraints are polyhedral convex sets. The dissertation concludes with a discussion of robustness and
output feedback.

The dissertation is organized in three main sections. The first section discusses moving horizon
estimation. The second section discusses model predictive control. The third section discusses some
issues regarding robustness and output feedback. The dissertation concludes with a summary of the
main results and a discussion of some open research problems.






Chapter 2

Moving Horizon Estimation

2.1 Introduction

At the heart of any monitoring or control strategy is an automated decision process. To make a rational
decision, one judges the various alternatives based on supporting factual evidence and then chooses
the decision that yields the greatest expected utility. Sometimes the evidence necessary for making a
rational decision is directly observable, though in the process environment, more often than not, it is
not directly observable and we need to infer the primary evidence from secondary evidence. However,
coupled with empirical correlations and physical laws distilled from experience, secondary observations
are often sufficient to infer the condition of the process environment and obtain the evidence necessary
for any decision process.

The coupling of observation with physical insight is what characterizes inference and estimation.
The problems of inference and estimation have had a long and distinguished history in the natural and
social sciences, engaging such luminaries as Gauss, Legendre, Wiener, Kolmogorov, and Krein. For
many problems the inference process appears simply as an observation process. Implicit in the inference,
however, are probabilistic assumptions such as normality that allow one to assess confidence in the sup-
porting evidence gleaned from the observations. Without some measure of confidence or uncertainty, we
cannot meaningfully maximize utility, because we are unable to characterize our expectations. For some
problems observations alone do not provide sufficient evidence for making rational decisions. Rather, we
need to couple the observations with explicit physical insight in the form of a mathematical model. The
typical form of the process model is either a state representation or an input-output (Volterra) repre-
sentation. Often, though not always, state representations arise from physico-chemical insight, whereas
input-output representations arise typically from empirical correlations. If we delve further, input-output
representations couple directly the observation process with our empirical insight, because the insight
derives from trends and correlations in the observations. Consequently, the inference process is coupled
directly with the observation process. When one makes an inferences using a state representation, the
observation process is divorced in most cases from our physical insight distilled in the model, though, of
course, the physical insight developed originally through logical empiricism.

This chapter discusses the dynamic inference problem using a state representation, also referred
to as a dynamic state estimation problem. Many control and monitoring systems are based on state-
space models. The state is a natural construct in the fundamental modeling of chemical and biological
processes, because it compactly summarizes the past information needed to understand the future be-
havior of the process. For example, temperature, pressure, and concentrations comprise the state of a
single phase chemically reactive system. Whether full spatial or simple functional representations such
as lumping are employed depends on the accuracy required. However, rarely is the state directly avail-
able from the process measurements, and the state typically needs to be inferred from secondary process
measurements or a measurable subset of the state. For example, the average molecular weight of many
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polymer systems is inferred from viscosity measurements. Also, the concentration in a simple chemically
reactive system may be inferred from the reactor temperature, a more easily measured state variable.

The importance of state estimation in engineering is well recognized, and the problem has at-
tracted significant attention for more than fifty years. One can legitimately argue that the seminal result
in state estimation is the work of Kalman (19606, 1961). Most, if not all, practical strategies for state
estimation are direct relatives of the Kalman filter. Consequently, the goal of this chapter is not to
propose an alternative to Kalman filtering or even offer new insight into the problem of state estimation.
Our far less ambitious goal, rather, is a problem that Kalman filtering does not address, the issue of
constraints.

For a subset of problems, one possesses insights in addition to physical laws and empirical
correlations in the form of inequality constraints on the state variables and process uncertainties. A
simple example is that many state variables, such as temperature and concentration, are positive. As
we discuss, many constraints arise from physical insights that are quantified in physical law, though not
explicitly in the standard form of differential algebraic equations. The differential algebraic equations
satisfy the constraints directly through physical laws and appropriate boundary conditions. In the
inverse problem, however, while the physical laws are still present, often the goal is to reconstruct the
boundary conditions from the observations. One obtains useful answers in most inference problems
without regard to constraints. For a class of problems, as we demonstrate through examples, in order
to obtain meaningful answers, the inference process needs to enforce compliance of the constraints. We
focus on this problem.

Satisfying inequality constraints is the domain of mathematical programming. Consequently any
inference process that incorporates constraints is necessarily formulated as a mathematical program.
Our interest is in the dynamic estimation problem. Hence, our solution employs online optimization.
Whereas one can view Kalman filtering, among many different alternatives, as an online optimization
strategy, and our proposed solution reduces to Kalman filtering when we do not consider constraints,
the constrained estimation problem cannot escape online optimization. While providing the ability to
incorporate constraints, online optimization introduces practical difficulties related to data compression.
Our proposed solution is moving horizon estimation (MHE). As we demonstrate, MHE bypasses the
compression issue, albeit approximately, and provides, in our opinion, a practical and flexible strategy
for constrained state estimation.

2.2 Literature Review

State estimation encompasses such disparate fields as engineering, statistics, mathematics, geology, and
econometrics. While people have worked on estimation problems since the time of Galileo, it was not
until the 1940’s that estimation was first studied systematically. This work involving such legendary
mathematicians as Kolmogorov, Krein, and Wiener was purely theoretical, though Wiener’s work was
motivated partially by an anti-aircraft fire-control problem. The major breakthrough in linear estimation
theory from a practical standpoint was the work of Kalman (1960b) and Kalman and Bucy (1961). Unlike
the Wiener filter, which requires the solution of an integral equation (the Wiener-Hopf equation), the
Kalman filter requires only the iteration of an ordinary difference equation or integration of a differential
equation. The solution of this problem, unlike the Wiener filter, is suitable for implementation online.
What distinguished the Kalman filter is that it uses a state representation of the process, whereas the
Wiener filter uses an input-output or signal covariance representation. Kalman filtering, therefore, “is
not a triumph of applied probability theory: the theory has only a slight inheritance from probability
theory while it has become an important pillar of systems theory” (Kalman 1994). Since the publication
of Kalman’s papers, there has been an explosion of research activity on Kalman filtering and state
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estimation. As Kalman (1994) humbly notes, over two hundred thousand cumulative papers, technical
reports, and books have been written on Kalman filtering. Two excellent historical accounts of linear
estimation are given by Sorenson (1970) and Kailath (1974).

Unlike the linear problem, there have been no comparable breakthroughs in nonlinear state esti-
mation, even though a general theory for nonlinear systems was developed long ago (Stratonovich 1960,
Kushner 1964, Kushner 1967), The problem is that these results are impractical for application—they
requires either the solution of a partial integro-differential equation or a functional integral difference
equation—and, consequently, they are of theoretical significance only. One commonly constructs a non-
linear state estimator, therefore, by linearizing the dynamic system along the estimated trajectory and
then employing Kalman filtering. The result is the extended Kalman filter. Jazwinski (1970) provides an
excellent discussion of extended Kalman filtering and its application. While the success of the extended
Kalman filter in application is widely documented in the literature, there are no theoretical stability
results available other than local results (Song and Grizzle 1995), non-divergence conditions (Safonov
and Athans 1978), and results for parameter estimation in linear systems (Ljung 1979).

Another approach for designing nonlinear state estimators is to transform the nonlinear system
to a linear system using a local coordinate transformation by output injection (Bestle and Zeitz 1983,
Krener and Isidori 1983). The theory is rooted in differential geometry. The idea is analogous to
feedback linearization, where the nonlinear system is transformed to an equivalent linear system by
precompensating with feedback. Isidori (1989) provides a general discussion of differential geometric
techniques in estimation and control. The strength of these approaches is that they yield stable observers.
However, linearizing transformations may exist only locally and are often difficult to obtain for complex
system. Furthermore, because general linearizing coordinate transformations require the solution of a
set of partial differential equations, solutions exist for only a limited class of systems. Another approach
is to use variable structure (or sliding mode) strategies (Slotine, Hedrick and Misawa 1987). These
strategies are rarely amenable to process systems however. The reader is directed to Muske and Edgar
(1996) for a survey nonlinear state estimation. There is also the related field of nonlinear observers. An
excellent, though slightly dated, comparative study of nonlinear observers is given by Walcott, Corless
and Zak (1987).

The success of model predictive control has motivated many researchers to investigate online
optimization strategies for constrained and nonlinear state estimation. The connection between opti-
mization and estimation dates back to Galileo in 1632, who sought to minimize various functions of
the prediction error. The method of least squares developed by Gauss in 1795 is also an optimization
based strategy for estimation. Even the Wiener filter was derived originally using variational calculus.
However, the original derivation of the Kalman filter used orthogonal projection. Bryson and Frazier
(1963) first showed the connection between Kalman filtering and optimization.

MHE is a practical strategy to handle the computational difficulties associated with optimization
based estimation, and, as a consequence, many authors have explored different issues in MHE. The first
application of MHE for nonlinear systems was the work of Jang, Joseph and Mukai (1986). Their strategy
ignores disturbances and constraints and attempts to estimate only the initial state of the system.
Thomas (1975) and Kwon, Bruckstein and Kailath (1983) discussed earlier moving horizon strategies
for unconstrained linear systems. Limited memory and adaptive filters for linear systems are analogous
to MHE, because only a fixed window of data is considered (see Jazwinski (1970) for a discussion of
limited memory filters). Many process systems researchers extended the work of Jang and coworkers.
Bequette and coworkers (1991, 1993) investigated moving horizon strategies for state estimation as
a logical extension of model predictive control. Edgar and coworkers (1991, 1992) investigated moving
horizon strategies for nonlinear data reconciliation. Biegler and coworkers (1991, 1996, 1997) investigated
statistical and numerical issues related to optimization based nonlinear data reconciliation. Marquardt
and coworkers (1996, 1998) discussed multi-scale strategies for MHE and the benefits of incorporating
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constraints in estimation. Findeisen (1997) investigated the stability of unconstrained linear MHE with
filtering and smoothing updates. Bemporad, Mignone and Morari (1999) discussed the application of
MHE to hybrid systems. Gesthuisen and Engell (1998) discussed the application of MHE to a pilot-scale
polymerization reactor and Russo and Young (1999) discussed the application of MHE to an industrial
polymerization process at the Exxon Chemical Company. Because MHE is formulated as an optimization
problem, it is possible to handle explicitly inequality constraints. Robertson and Lee (1995, 1996, 1998)
have investigated the probabilistic interpretation of constraints in estimation. Muske and Rawlings (1993,
1995) derived some preliminary conditions for the stability of state estimation with inequality constraints.
Tyler and Morari (1996, 1997) demonstrated how constraints may result in instability for non-minimum
phase systems.

In parallel to the research done in process systems, unconstrained MHE was investigated also by
researchers in automatic control. Zimmer (1994) investigated an unconstrained MHE strategy similar
to the approach of Jang et al. (1986) and derived conditions for stability using fixed-point theorems.
Moraal and Grizzle (1995) also derived conditions for stability using fixed-point theorems. However,
Moraal and Grizzle (1995) formulated the estimation problem as the solution of a set of algebraic
equations. Michalska and Mayne (1995) investigated an unconstrained MHE strategy similar to the
approach of Jang et al. (1986) and derived conditions for stability using Lyapunov arguments.

What distinguishes this work is that we provide a theory of MHE that is compatible with
deterministic estimation theory, including Kalman filtering. A major focus is on reconciling constraints,
particularly those on state variables, with estimation theory. As we demonstrate, state constraints alter
implicitly the problem structure. The outline of the Chapter is as follows. We begin by introducing
the constrained estimation problem and then show how moving horizon estimation arises when one
considers online implementation. QOur focus then shifts, and we discuss constraints, in particular the
probabilistic interpretation of state constraints and the issue of causality. Using a series of examples of
varied complexity, we illustrate the potential utility of incorporating constraints in the inference process.
We conclude with a summary of our investigations.

2.3 Constrained State Estimation

At time T suppose our observations of the process comprise solely of a sequence of discrete measure-
ments {yo,¥1,--- ,yr—1}. For simplicity we limit our discussion to the problem where all of the sensors
provide measurements simultaneously, though we can extent the proposed strategy mutatis mutandis to
incorporate multi-rate sensors. The objective at time T is to reconstruct the evolution of the state of
the process {z(t);t > 0} from the observations {yo, y1,... ,yr—1}-

We assume we can capture our physical insight of the process with a finite-dimensional® differ-
ential algebraic equation of the form

F(m(t)ﬁb(t)au(t)aw(t):t) =0, (21)

where z(-) denotes the time derivative of the state z(-), u(-) denotes measurable exogenous disturbances,
and w(-) denotes unmeasurable exogenous disturbances. The disturbance w(-) is typically modeled as
a random process and may account also for modeling uncertainty. If we couple our physical insight
of the process with the measurements, then we require a model of the process sensors. We relate the
observations y(t) to state x(t) using a model of the form

y(8) = g(2(t),t) +v(t), (2.2)

IExtensions to “infinite-dimensional” or distributed parameter systems are possible, though this problem is far more
complex.
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where measurement uncertainty is captured in the vector v(t). One commonly assumes the vector v(t)
is a normally distributed random variable. We stress that the vector y(t) in (2.2) denotes the actual
observation, and the vector v(t) denotes the error between the observation y(t) and the predicted sensor
reading g(z(t), t).

With the exception of linear and trivial nonlinear process models, we need to discretize the
differential algebraic equation (2.1) in order to perform any computation or analysis. At this stage of
our discussion, the discretization is conceptual. Discretization is usually performed during optimization.
Whether one employs a simultaneous strategy (c.f. Biegler (1997, 1998) and Bock and coworkers (1998))
or discretizes first using a DAE solver (c.f. Ascher and Petzold (1998)) is inconsequential to our dis-
cussion, though extremely important when one considers online implementation. We suppose hereafter
that the differential algebraic equation (2.1) is discretized with a zero-order hold on the disturbances
u(-) and w(-) yielding the difference equation

Try1 = fa(Tr, up, wi, k), (2.3)

where the integer k denotes the discrete-time index. A typical choice is t = kAT, where AT denotes
the sampling period. The subscripts on the vectors x, u, w, and v denote the value at the points of
discretization (e.g. z = z(kAT)). We assume also the points of discretization (e.g. ty = kAt) coincides
with the measurement times. Rarely is the equation fq(-) in (2.3) available in algebraic form. Instead,
we view the function f4(-) abstractly as the numerical solution of (2.2) with initial condition zj. The
difference equation (2.3) consequently does not include explicitly algebraic constraints, even though the
corresponding differential equation (2.1) does.

When we couple physical insight with the process measurements, we need to introduce a measure
of uncertainty. The model predictions rarely, if ever, coincide with the process measurements. We need
somehow to distribute the errors between the model and sensor measurements. In other words, we
need to reconcile our model with the process measurements. Reconciliation in our framework amounts
to a tradeoff between the vectors wy, and v,. One may interpret wy as process disturbances or model
uncertainty and the vector vy as sensor noise. A natural framework to characterize uncertainty is
probability theory, where we treat the vectors w, and v, as random variables. Our choice of the
respective probability distributions provides the reconciliation. A common alternative to probability
theory is game theory. In game theory one uses instead, though with often the same result, deterministic
uncertainty descriptions of the vectors wy, and vy (c.f. Bagar and Bernhard (1995)). Another alternative
was proposed recently by Binder, Blank, Dahmen and Marquardt (1999). Eschewing both probability
and game theory, they view the reconciliation problem instead as the inversion of a compact operator,
an ill-posed problem. The tradeoff in their framework is the degree of regularization.

When we formulate the state estimation problem from the perspective of probability theory,
we typically model the evolution of the state as a discrete-time Markov process®. As we expect the
process measurements are correlated with the state, the quantity of interest becomes the conditional
probability density function of the state evolution {zg,z1,...,z7} given the process measurements

{y05 Y1y--- 7yT—1}:
p(moamla"' JmleO’y17“‘ anyl)' (24)
The optimal estimate of the state at time k given the measurements

{yanla s 5yT—1}7

which we denote by #4/7_1, is then a functional Ly (-) of conditional probability density function (2.4):

{fi'O\Tflaii'l\Tfla - afi'T|T71} = Lr(p(xo,21,...27 | Y0,Y1,--- ,YT—-1))-

2 An equivalent assumption is that the disturbances vectors w;, are independent.
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A typical choice for the functional Lr(-) is either an expectation or the maximum a posteriori Bayesian
(MAP) estimate

{§70|T—1;£'1|T—1; e ;57T|T—1} €
arg  max  p(zo,Z1,--- 2T | Yo,--- YT—1)- (2.5)
{zo,z1,...,x7}

In this work we focus solely on the Bayesian criterion.

Solving (2.5) requires an expression for the conditional probability density function (2.4). Fol-
lowing the developments of Cox (1964) and Jazwinski (1970), we determine the conditional probability
density function (2.4) as follows. We can express, using the Markov property, the joint probability of
the state as

T-1
p(%o,- - ,TT) = Pao(T0) H p(Trt1|zr),
k=0
where p,, (zo) denotes our prior information concerning the initial state of the system. If we assume the
measurement noise vy, is independent, then using our model of the sensor (2.2) we have the relationship

T-1
PWos -+ »yr—1 | Tos- -+ s@r-1) = [] Poe (Wi — hlxx))-
k=0

Applying Bayes’ rule, we obtain

T-1

P(&0, 1, -, 27 [ Yo, - »YT—1) & Pag (o) [ [ Puw Wk — ki) p(ks1|2k)-
k=0

The properties of logarithms allow us to establish following equality

arg max p(mO;wla"- »TT |y07"' 5yT—1)7
{zo,zl,...,zT}
= arg max logp(wh)xla"' » TT | Yo, - -- 7yT—1)5
{z0,z1,... ;2T
T-1
= arg{ max Z 10g pu,, (yx — h(zk)) +10g p(Th-+1|Pk) + 108 Pag (20)-
ZOsTLyeee sTT k—0

The last equation is useful, because it allows us to transform the problem (2.5) into a multi-stage
optimization. As we illustrate, compression is conceptually easier to address when the problem structure
is multi-stage.

We have succeeded in transforming the state estimation problem into a multi-stage dynamic
optimization, though the formulation is still requires the specification of the probability density functions.
The probability density functions p,, and p,, are commonly chosen as normals. Even though the
choice is justified typically by the law of large numbers, one chooses normals, more often than not,
because they are mathematically convenient. Evaluating the state transition probability density function
p(zky1|xr), however, requires the solution of functional difference equation, the discrete-time analogue
of the Kolmogorov’s forward equation, unless we make the following simplifying assumptions®:

A The disturbances wy are mutually independent;

3If the vector wy, is a normally distributed random variable, then we can replace assumption B with

Ja(@k s ug, wr, k) = f(zr, ug, k) + Gug,

where G is a matrix with full column rank.
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B fd(xk;uk;wkak) = f(xk,’ll,k,k) + Wg.

Under these two assumptions, we have

P(Zrt1 | Th) = Pup (Trt1 — f(Tr, ur, k).

The probability density function p,, (-) is also commonly chosen as a normal. Assumptions A and B
allow us to cast (2.5) as an optimization explicitly in terms of the process model and the probability
density functions py, (-), Pw, (*), and pg, ()

arg max  p(Zo,&1y--- ,ET | Yoy« ,YT-1) =
{zo,z1,...,xT

T-1
arg  max Y 10gpy, (y — h(wx)) + 108 pu, (@ri1 — f(zk, ug, k))
{zo,z1,...,x7T} prd
+ log pg, (z0)-
If we assume furthermore that the density p,,(-) is normal with mean £y and covariance Iy and the

densities py, (-) and p,, (-) are normal with zero mean and covariances ) and R respectively, then we
have

arg max p('z'O;le"' 7$T|y07'--7yT71)=
{$0,$1,...,zT}
T-1
arg  min > [lyk = h(@i) -1 + 12k = F(@n, we, B)[1G-s
{mo,ml,...,zT} k=0

+||zo —:ﬁo”%al,

where ||z||} = 2T Az.
The normality assumptions are sufficient for many problems. However, we can improve our
descriptions of the random variables wy, vg, and z by introducing the constraints

wkEWk, ’UkEVk, IL‘kEXk,

where the sets Wy, Vi, and X are closed and convex. One commonly chooses the sets as finite-
dimensional polyhedral convex sets: i.e.

Wk: Wg - ’LUk SWkwkka .
ax

min m

In a probabilistic framework, the constraint sets provide the support for the probability density functions.
If, for example, we assume

Wk z{wk : —lg’wkSI},

and the probability density function p,, (-) is a normal with zero-mean and unit variance, then the con-
straints project the probability density function p,, (-) onto W;, yielding a truncated normal (see Fig-
ure 2.1). One obtains similar results if the probability density function p,, (-) is coupled with constraints.
However, we advise against constraining the vector vy, due to the possibility of outliers. Constraints may
amplify the affect of spurious measurements; if one constrains the measurement residual vy, then the
estimate #;7_; may be unable to ignore the spurious measurement y;. One may also use constraints
to generate asymmetric distributions by piecing together truncated probability density functions as a
jigsaw using variable decompositions (Robertson 1996, Robertson and Lee 1998).

The probabilistic interpretation and implication of constraints on the state xj is not as simple.
Some of the issues are illustrated in the following simple example. Suppose we have a leaky vessel
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Figure 2.1: Comparison of a normal and truncated normal probability density function.

initially full of a liquid compound A. Let the state zy denote the mass of A at time k and the vector
wy, denote the mass of A that leaks from the vessel during the time interval k to k + 1. A simple mass
balance yields the model

Tk4+1 = T + Wk-

In addition to the mass balance, we know the state xj is positive and bounded and the disturbance
wyg is negative. One immediate consequence of the state constraint z; > 0 is that the state xj and
disturbance wy are correlated: if the state xp is small, then the state constraint xz; > 0 implies the
disturbance wy, is also necessarily small. This result is physically obvious, yet also somewhat surprising.
One typically assumes that the exogenous disturbances are independent of the state of the process. If
we ignore the effect of recycle and feedback loops, the disturbances are a result of variations in upstream
processes unaffected by the state of the downstream process. Another consequence of state constraints
is the violation of causality. If we rewrite the state equation explicitly in terms of the vector wyg, then
we have the equivalent representation

k

Tp41 = o + Zwk.
k=0

If we suppose that the initial leak wg is large, then the future leaks {wi,ws,...} are necessarily small:
there is less mass in the vessel that can leak out. Likewise, a large leak at time k requires that past
leaks {wq,w1,... ,wk—1} are small. This causal correlation is equivalent to the correlation between the
disturbance vector wy and the state xp, because we model the system as a Markov process. Again,
one commonly assumes the disturbances are mutually independent, and in this case they are not. The
conclusions from this example are that state constraints may significantly alter the probabilistic structure
of the problem. Rarely is this structure explicitly specified in the problem statement, so one should
exercise care with state constraints. The advantage of state constraints is that they allow for simplified
models: rather than having to develop a correlation between the mass in the vessel z; and the leak wy,
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we can use a simple mass balance in conjunction with constraints. Simplifying the modeling requirements
is important, because the most time consuming task in design is model development (Ogunnaike 1995).
We discuss the issue of constraints further in Sections 2.4 and 3.2.2.

Moving Horizon Estimation

Consider again the problem (2.5). Under the assumptions of normality, we can recast the state estimation
problem at time T as the following mathematical program*:

min Sr(zo, {wr}), (2.6)

zo,{wk}r o

subject to
Tp+1 = f($k7uk7 k) + wg, (278‘)
Yk = g9(xk, k) + v, (2.7b)
wy, € Wi, v € Vy, T € Xy, (2.7c)
where
T-1
(2o, {wr}) = Z llorll-1 + llwrllg-2 + llzo — ZollF-1 -
k=0

If we let Zoi7—; and {wk|T_1}kT;01 denote the solution to (2.6), then the optimal state estimate at time
T is the sequences {Zj r_1}1_, obtained by solving the state equation (2.7a). The matrices () and R,
in this formulation, are the tuning parameters for reconciling the model with the process measurements.
The matrices provide the means by which the errors are distributed between the model and the process
data. In addition to their statistical significance, the matrices have the following simple interpretation:
the matrix @) provides a measure of confidence in the model while the matrix R provides a measure of
confidence in the process data. Thus, if the matrix @Q is “large” relative to R, then we are less confident
in the model than in the process data and vice-versa.

Many different options exist for solving the mathematical program (2.6)-(2.7). The problem as
formulated requires the solution of a nonlinear program, a computationally demanding though tractable
problem. If the process model is stiff or has unstable dynamics, a simultaneous strategy, in which
the discretization and optimization are performed simultaneously, is often advantageous (Biegler 1997,
Biegler 1998, Bock, Diehl, Leineweber and Schléser 1998). When the process model is linear and the
constraints are polyhedral convex sets, the mathematical program reduces to a quadratic program, a
far less computationally demanding problem. Regardless of the problem complexity, solving the state
estimation problem (2.5) online is usually impossible, because the size of problem (2.6)-(2.7) grows
without bound as we collect more process measurements. Online implementation, therefore, requires
that we bound the size of the mathematical program (2.6)-(2.7). Consequently we need a strategy to
compress the data. The strategy we employ is approzimate dynamic programming.

Consider the objective function ®7(-). We may rearrange the objective function ®(-) by break-
ing the time interval into two pieces t; = {k:0<k<T-N-1}andt; ={k: T-N<k<T -1} as
follows:

T—1
Op(zo,{witizg) = D llvklli-r + lwklly-: +
k=N—M
T—M-1

S loels + loells + llzo — ollfr.
k=0

4{wk}z=_01 = {wo,w1,... ,wr—1}
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A Estimation Window

\

Figure 2.2: Graphical depiction of the moving horizon strategy.

Because we use a state-variable description of the system (i.e. a Markov process), the quantity

T-1

Y lorllf-s + llwxllg-s
k=N-M

depends only on the state zr_n, disturbance sequence {wk}fgé_ x> and the process measurements
{yk}f;}f ~- The principle of optimality allows us to cast the estimation problem (2.5) as a fixed-
horizon estimator. Standard dynamic programming arguments allow us to replace the mathematical
program (2.6)-(2.7) with the following equivalent mathematical program

T-1
min S lveller + llwrlly— + Zr-n(z7-N)

T—1
zN-m{we}Zr_n k=N—-M

subject to the constraints (2.7) where

Z.(p) = min . {®,(xo, {wi}) : =, =p} (2.8)
zos{wk }—g

subject to the constraints (2.7). The mathematical program (2.8) provides the general structure for
moving horizon estimation. Whereas in the problem (2.6)-(2.7) we considered all of the available process
measurements, in moving horizon estimation we account explicitly only for the last N process measure-
ments. We account for the remaining process measurements using the function Zr_n(-). The name
“moving horizon estimation” arises from the analogy of a sliding estimation window (see Figure 2.2).

We refer to the function Z;(-) as the arrival cost. Arrival cost is fundamental in estimation,
because, by providing a means to compress the data, it allows us to transform the unbounded mathe-
matical problem into an equivalent fixed-dimension mathematical program. The arrival cost compactly
summarizes the effect of the data {yk}z;é on the state x,, thereby allowing us to fix the dimension
of the optimization. We can view arrival cost as the analogue of the “cost to go” in standard back-
ward dynamic programming. In probabilistic terms, the arrival cost generates the conditional density
function p(z;|yo,-.. ,¥r—1) and vice-versa: the arrival cost is proportional to the negative logarithm of
the conditional density function p(z;|yo, ... ,¥r—1). Hence, we may view arrival cost as an equivalent
statistic (Striebel 1965) for the conditional density function p(x;|yo,-.. ,yr—1). Further discussion on
the properties of arrival cost may be found in Chapter 3.

Arrival cost provides a general method for compressing the process data. An excellent example
of arrival cost is the Riccati equation arising in Kalman filtering. Consider the problem (2.6)-(2.7) where
we assume the model is linear

Tpy1 = Azp + w, yr = Cxp + vy
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and ignore the constraints Xy, Wy, and V. If we use the Kalman filter covariance update formula
Ilr = GQG™T + Ally_1 AT — Ally_1CT (R + Cllr_ CT)~'Clr 1 AT (2.9)
subject to the initial condition IIy = II, then we can express the arrival cost explicitly as
Zr(z) = (v — &7) "1 (z — 1) + 97,

where 27 denotes the optimal estimate at time T given the measurements {yj}}_s and @ denotes the
optimal cost at time T' (see Appendix D for the derivation). From the preceding arguments, we have

min  ®p(xg, {wr}) =
@0, {wi}iZ)

T-1
min Y okl + [lwellg- +

-1
zr-~, {wrh Zr_n k=T—-N

lor-~ = #7-Nllfzs  + ®7_p-
We can extract the Kalman filter by considering a horizon of N = 1. For this scenario, we have

T p1 T -1
Sr(zr_1,wr—1) =vp_ R or_1 +wp Q7 wr_1+

(@r—1 — #7r—1) It (@1—1 — E7-1)-

Substituting in the model equations, evaluating the minimum with respect to wr_; and z7_1, and using
some algebra, we obtain the well known result

&r = Adr_1 + L(yr — CAZ1_1)
for the Kalman filter, where
L=Allr_,CT(R+ Cly_,CT)".

Algebraic expressions for arrival cost do not exist unfortunately when either constraints are
present or the process model is nonlinear. As these are the problems of interest, we need to generate
approximate algebraic expressions for the arrival cost. At one extreme, we can discard the past infor-
mation by approximating the arrival cost as a constant function: 2}() = ®*. At the other extreme, we
can ignore the current measurements and consider only the past measurements by approximating the
arrival cost with the extended real-valued function

5 ®r oz, =1z,
ZT(xT):{ooT DT, AR

Both of these choices are undesirable. Rarely are we completely ignorant or informed of the value of the
state . One strategy to approximate the arrival cost is to use a first-order Taylor series approximation
of the model around the estimated trajectory {@,}7_,. This strategy approximates the arrival cost
with an extended Kalman filter covariance update formula. We interpret this strategy as a neighboring
extremal paths strategy in the context of estimation. Neighboring extremal paths are used to generate
approximate optimal feedback laws for nonlinear systems by employing an extended linearization (Bryson
and Ho 1975). The basic idea is as follows. If the deviation from the optimal path is small, then a linear
approximation at the optimal path accurately describes the neighboring path.
If we let
of (zr, ug, k) 9g(z)

Ap=—7——"| , Cr=

8.’Ek - a.Z'k B ’
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then we obtain the extended Kalman filter covariance recursively from the equation

Oy = Q+
Ar(Ty — HTC%:(R + CTHTC%)flcTHT)A%

subject to the initial condition IIg = II. The choice
Z,(2) = |lo — &[5 (2.10)

summarizes our best available knowledge, to a first-order approximation, without introducing extra
knowledge not available from the measurements. Using the extended Kalman filter to approximate the
arrival cost has many advantages. When there are no constraints, one can view the estimator as an
iterated extended Kalman filter. When the process model is linear, the estimator reduces to a Kalman
filter.

One needs to wary of divergence (instability) when approximating the arrival cost. So long as the
approximate arrival cost 27() satisfies certain technical conditions, one is guaranteed non-divergence,
or stability (see Chapter 3). When the process model is linear, the Kalman filter covariance, regardless
of whether there are constraints, yields a stable estimator (see Chapter 4). However, when the process
model is nonlinear, the extended Kalman filter covariance does not guarantee stability, and additional
measures are necessary to guarantee stability. In practical terms, there should be a degree of forgetting:
the estimator should not weight the past data too heavily. One property of the Kalman filter is that
it exponentially forgets the past data (c.f. Anderson (1999)). If one is concerned about estimator
divergence, then adding a “forgetting factor” to the approximate arrival cost improves the estimator’s
“robustness”. A simple strategy for generating a forgetting factor is to pre-multiply the approximate
arrival cost by a scalar o € (0,1):

2

Zr(z) = oz — ‘%T”H;I'

The interested reader is directed to Chapter 3 for further discussion regarding forgetting factors in
constrained moving horizon estimation.

We formulate, therefore, moving horizon estimation (MHE) at time T as the solution to the
following mathematical program

~

{IIliI;T_1 ¢T(1'T7N; {wk}) (2.11)

subject to the constraints

Tr+1 :f($k7uk7k)+wk7
yr = 9(zk, k) + vk,
wkEWk, ’UkEVk, IL‘kEXk,

where

¢T($T—N, {wk}) =

T—1
S Meklls + okl + llor o — b wlP
k=T—-N

If we let, with abuse of notation, £7_n7_1 and {wk‘T,l}kT;;fN denote the solution to (2.11), then the
optimal state estimate at time T is the sequences {2 r_1 H_ x obtained by solving the state equation
(2.7a). Unlike the “full information” problem (2.6)-(2.7), the MHE estimator generates only truncated
estimates—the consequence of considering only the data sequence {yk}f;}f - For notation simplicity,
let i’T = £T|T71
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2.3.1 CSTR Example

To illustrate the ideas presented, consider a first order, exothermic, irreversible reaction A — B carried
out in continuous stirred tank reactor (CSTR). For control and monitoring purposes, suppose we need
to measure the time evolution of conversion. One solution is to measure directly the concentration of
species A or B. While this solution is optimal, directly measuring the chemical species may be neither
practical nor feasible due to operating conditions and economic factors. A more practical solution, at
least in terms of the sensor requirements, is to infer the conversion from temperature. In particular, we
seek an algorithm that reconstructs the conversion from the temperature measurements.

There are many ways to account for uncertainty in our model of the CSTR. For simplicity
we assume there is only an additive, unmeasured, temperature disturbance wr. We may view the
temperature disturbance wy as an aggregate disturbance encompassing such effects as feed temperature
fluctuations, heat loss, and heat exchanger fouling. To account for uncertainty, we model the disturbance
wr as a stochastic process. If we make standard simplifying assumptions such as perfect mixing, then
we can model the CSTR as the following dimensionless stochastic differential equation

dx T2
—_— = — Da(1 — _ 2.12
g~ ot Dal ml)eXp{1+:c2/5}’ (2.122)
dx- T
d_: = —z + BDa(1 — ;) exp {ﬁ} —U(zs — 2¢) + wr, (2.12b)
dwr = awrdt + dfy, (2.12¢)

where {;, t > 0} is a Brownian motion process with E{d3?} = 6Qdt. The variable z; is the con-
version, x2 is the dimensionless temperature, ¢ is the dimensionless time, and x5, is the dimensionless
cooling water temperature. The parameter B is the dimensionless adiabatic temperature rise, Da is the
Damkdhler number, £ is the dimensionless activation energy, and U is the dimensionless heat transfer
coefficient. See the article by Uppal, Ray and Poore (1974) for the details of the dimensionless variables.
It is common to assume the measurements are corrupted with white noise. As reactor temperature is
measured only at discrete times, we use the following model

y(tr) = z2(tr) + vk

to relate the measurements to the reactor temperatures, where the sequence {t;}32, denotes the times
when measurements are available and the white noise sequence {vj }3° , is used to represent measurement
error. We assume for simplicity that t;, = kAt, where At is the sampling period. The optimal Bayesian
estimate for the conversion % (¢x) at time # is the most probable conversion given the sequence of tem-
perature measurements {zo (tj)}fzo. We formulate the problem as the solution to following optimization

Z1(tx) € arg m(&zx)p(a:l(tk) | Z2(to), - - - z2(tr))-
Z1(lk

To determine the conditional probability density function, we require expressions for the state
transition probability density function p(z;|z; 1) and the measurement probability density function
Du, (). We can obtain an expression for the state transition probability density function, in theory, by
solving Kolmogorov’s forward equation. If we make the definition

—x1 + Da(l — :cl)exp{l_i_wTQ/g}
2

f(z) = —22 + BDa(l — x1) exp {IJUTZ/S} = Ulwz — @2c) + wr
2

awT
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with the variable substitution

IL'I:[(El Ty Wt ]T,

then Kolmogorov’s forward equation becomes a partial differential equation of the form

G t53) = = 3 o i) @)] + o . 1:1)96) (213)

with boundary conditions
Jm p(z,ty) = é(z —y)
and
p(o0,t;3y) = p(—o00,t;y) = 0.
For a constant sampling period At, we obtain the equality
p(ajlzj-1) = p(z;, At;z5-1).

The cost of solving (2.13) numerically is far too large considering the arbitrary choice of the distur-
bance structure. So instead, we seek an approximate representation of the transition probability density
function by linearizing Kolmogorov’s forward equation. If we let

0

A= % (%)

for some Z, preferably a steady state, then we can approximate the state transition probability density
function with the solution of the following continuous time Riccati equation

T _ 4QW) + QUWA” +5Qese]

subject to the initial condition

where e3 is the unit vector whose 3rd entry is 1. The Riccati equation is obtained by taking the Fourier
transform of (2.13) and recognizing the solution to (2.13) is the characteristic function of a normal
distribution (Jazwinski 1970). Recall, normal distributions are invariant under linear transformation.
Hence, we obtain the following approximate expression

p(xjlrj-1) ~ N(fa(z;-1), Q(At))

for the state transition probability distribution with a constant sampling period At. The function
fa(z;) = 2(At,z;), where z(-,z;) : [0,At] - R® is a continuous function that satisfies the integral
equation

o(rz) = 2 + / " (e(6 ) de.

If we assume that the measurement errors for the CSTR are zero mean and normally distributed with
covariance o2, then we obtain the following expression for the measurement probability distribution

o, (. — 22(tk)) ~ N(0,07).
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B [1494 | U 2.09
Da | 1.00 || 6Q | 5x107°
£ 25 a —-0.1

At | 05 | o, 1

Table 2.1: Dimensionless parameters for CSTR example

For simplicity and consistency, we assume
p(-’l?(]) ~ N(i.OaH)a

where z(to) denotes our prior knowledge of the state. If we take logarithms and discretize the problem
with a zero order hold on the Brownian motion increments d3, then the associated optimization becomes

T-1 2
. _ - N _ N
min > wiQ ' (Atywy + fyr = 20)} . Dlagn (o — #0)TTI Y (2o — 20)
wo{wr}i, 2o k=0 Oy

where the systems dynamics are specified by the nonlinear difference equation

Tpy1 = fd(:ck) + wg.

Simulation Results

We designed the moving horizon estimator using a the horizon length N = 5. The stochastic differential
equation (2.12) was solved using a first order Euler technique (Kloeden and Platen 1992). The estimator
used the optimization algorithm NPSOL (Gill, Murray, Saunders and Wright 1986) and differential
equation solver LSODE. The parameters are listed in Table 2.1. Figure 2.3 shows a comparison of the
true arrival cost and the extended Kalman filter approximation as a function of the conversion z; and
the dimensionless temperature z,. As the figure demonstrates, the extended Kalman filter update is an
effective approximation for the arrival cost. Figures 2.4 and 2.5 shows a plot of the MHE for a particular
realization of the stochastic process. Figures 2.4 and 2.7 shows a plot of the MHE for another realization
of the stochastic process where an ignition in the CSTR occurs. As both figures demonstrate, the MHE
does an effective job of reconstructing the state. Due to the relative simplicity of this example, the
extended Kalman filter yields comparable performance.

2.4 Constraints

The raison d’étre for moving horizon estimation (MHE) is the ability to incorporate constraints in
estimation. One might plausibly argue, however, that nonlinear dynamics also motivate the use of MHE.
Unlike many other estimation strategies, MHE provides stability guarantees (see Chapter 3). One may
also construct a stable estimator using a local coordinate transformation by output injection (Bestle and
Zeitz 1983, Krener and Isidori 1983). However, unlike differential geometric methods, moving horizon
strategies are applicable to a large class of problems. In particular, any feedback linearizable system
can be stabilized also with a moving horizon controller (Meadows, Henson, Eaton and Rawlings 1995).
We expect a similar result holds for estimation. Stability guarantees are important, but performance is
the predominant concern. The extended Kalman filter provides only weak local stability guarantees (c.f.
(Song and Grizzle 1995)), yet performs as well as most other estimation strategies. A “folk” theorem in
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Figure 2.3: A comparison of the true arrival cost and extended Kalman filter approximation for CSTR
example with M = 5.
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Figure 2.5: CSTR Example 1: Comparison of true and estimated temperature
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Figure 2.7: CSTR Example 2: Comparison of true and estimated temperature
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control theory claims that if the noise is relatively small, then the performance of the extended Kalman
filter is nearly optimal. Whereas, if the noise is large, then designing any monitoring or control strategy
is “misguided” (Wonham 1969). The last thirty years have failed to convince us otherwise.

We may view unconstrained MHE as a form of extended Kalman filtering or, rather, the extended
Kalman filter as a form of unconstrained MHE. The difference between the two strategies is the degree of
optimization: the extended Kalman filter takes only one Newton step, while unconstrained MHE takes
as many Newton steps as necessary to satisfy the (local) optimality conditions. We view, therefore, MHE
as a form of iterated extended Kalman filtering and the extended Kalman filter as a suboptimal strategy
for unconstrained MHE with a horizon length N = 1. One reason for the success of the extended Kalman
filter is that often most of the cost reduction in optimization is obtained during the first few Newton
steps. Performances rarely improves tangibly if one iterates further.

Constraints motivate, therefore, the use of MHE. We can best illustrate the potential of MHE
with the following examples.

2.4.1 Example of inequality constraints yielding improved estimates.

Consider the following discrete-time system?

S [ <4 I e O SR PP
We assume {vj} is sequence of independent, zero mean, normally distributed random variables with
covariance 0.01, and wy, = |z| where {21} is a sequence of independent, zero mean, normally distributed
random variables with unit covariance. We also assume the initial state xg is normally distributed with
zero mean and covariance equal to the identity.

We formulate the constrained estimation problem with @ = 1, R = 0.01, Il = 1, and %9 = 0.
For the MHE, we choose N = 10. To capture our knowledge of the random sequence wyg, we add the
inequality constraint wy > 0. Note, this formulation yields the optimal Bayesian estimate. A comparison
of the Kalman filter, full information estimator, and MHE for a single realization of (2.14) is shown in
Figure 2.8. As expected, the performance of the constrained estimators is superior to the Kalman filter,
because the constrained estimators possess, with the addition of the inequality constraints, the proper
statistics of the disturbance sequence wy. Hence, the constrained estimation problem formulated above
accurately models the random variable wy.

If we consider the statistics of the random variable wy, it is important to note that the mean is
not zero and the covariance is not 1. Rather, the mean is 2/v/27 and the covariance is (1 —2/7). When
we consider the negative inverse logarithm of the probability density function, however, we have

1
— log puy, (wi) o Ewgwk for wy, > 0.
Note, therefore, that constraints allow for non-Gaussian disturbances.

2.4.2 Leak detection and inventory estimation.

Consider the problem of detecting the location and magnitude of a leak in the waste water treatment
process shown in Figure 2.9. We suppose the process is described by the following linear state space

—3s+1
$243s5+1

5This state space system is a realization of the following system G(s) = sampled with a zero-order hold and

sampling time of 0.3.
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The physical meaning of the entries in state variable z; are given in Table 2.4.2. We choose
m = 1 when we suppose the mass of waste entering the process is measured and m = 0 otherwise. We
suppose the mass of each tank and the mass flowrate of waste entering the process are measured with
the error covariance

R=diag[8 8 8 8 4].

As the leak is limited to waste tank #2, the process was simulated with wy, = |z|, where zj, is a normally
distributed random variable with covariance matrix

Q.=diag[ 0 0 5 0 15 ].

As the location of the leak is unknown (to the estimator), we design the estimator with the covariance
matrix

Q=diag[5 5 5 5 15].
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(D | Mass in Equalizing Tank

z(®) | Mass in Tank #1

z(3) | Mass in Tank #2

z® | Mass in Tank #3

2(®) | Mass of Waste Entering Equalizing Tank

Table 2.2: State description for Example 2.4.2

Scenario Total Losses Mean Losses (by Tank)
Equal. #1 #2 #3
Flow Actual 948.08 0 0 1.8962 0
Measured MHE 992.82 0.2429 0.2387 1.1253  0.3176
KF 593.77 -0.2538 -0.0610 1.0262  0.0425
(No Leak)  Actual 0 0 0 0 0
MHE 295.49 0.2418 0.2698 0.2925 0.27001
KF -186.44 -0.2552 -0.0129 0.0113  0.0014
Flow Actual 916.81 0 0 1.8336 0
Unmeasured MHE 907.54 0.1074  0.2427 1.0664 0.3123
KF 405.24 -0.5722 -0.0626 0.9761 0.03860
(No Leak)  Actual 0 0 0 0 0
MHE 244.87 0.1655 0.2729 0.2794  0.2648
KF -335.74 -0.5732 -0.0169 -0.0032 -0.0010

Table 2.3: Simulation results of Example 2.4.2

We, furthermore, added the constraints wy > 0 and x > 0 in order to satisfy the mass balances: mass
is only lost through a leak and the tanks must have positive mass. A horizon of M = 10 was chosen.

Two separate scenarios were considered (flow measured and unmeasured) along with a control
where there is no leak. The results of the simulations are shown in Table 2.3. As one would expect, both
the Kalman filter and MHE are able to detect the leak. The ability to detect the leak degrades when
the flowrate is unmeasured. This result is expected as less information is available to both estimators.
The benefit of constraints arise when one attempts to estimate the total losses. While MHE is able to
provide a fairly accurate estimate of the total losses, the Kalman filter underestimates the total losses.
The Kalman filter provides also negative estimates for the losses in the equalizing tank and tank # 1 in
all four scenarios. Furthermore, when there is no leak, the Kalman filter predicts a net addition of mass
to the tank system, which is, obviously, physically impossible. One can attribute this difference to the
addition of constraints; the only difference between the two algorithms.

Note also that the constrained estimates are slightly biased away from zero in the tight tanks.
Recall from the previous example that a truncated normal does not have a zero mean. Rather, the
mean is 20/v/2m, where o is the standard deviation of the corresponding normally distributed random
variable. Any automated procedure involving hypothesis testing needs to account for this fact. This
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point is clearly illustrated when we simulate the waste treatment process without any leaks. When the
flowrate is measured, the constrained estimate is worse than the unconstrained estimate. The reason for
the poor estimates is due to the positive mean values: the constrained estimates have a mean bias of
roughly 0.25. If we remove the bias, the estimate for the total leak is roughly zero as desired. However,
if we remove the bias from the simulation where there is a leak in Tank #2, then the estimate for the
total leak is the same as the Kalman filter. This example illustrates some of the issues one need be
wary of when implementing constraints. While the constrained estimators provide a good estimate of
the total losses when there is a leak, MHE and the Kalman filter both provide poor estimates when
there are no leaks. The problem stems from an incorrect model of the process: the true process has no
leaks, while the model assumes a leak in each tank. Nevertheless, one would normally use such a model
in fault detection. Hence, any analysis would need to account for this discrepancy.

The “proper” strategy is to formulate this problem as a constrained signal detection problem.
One would model all leak possibilities and then discriminate between the various scenarios using hypoth-
esis testing. An alternative is to employ mixed integer programming (c.f. (Gatzke and Doyle IIT 1999)).
As the focus of this chapter is not fault detection, but rather constrained monitoring, we do not pursue
this topic further.

2.4.3 Semibatch Reactor

Consider the stirred-tank reactor depicted in Figure 2.14 where the following liquid phase exothermic
reaction occurs

A+2B—C.

The state estimation problem, inspired by the problem described by Rawlings, Jerome, Hamer and
Bruemmer (1989), is to estimate precisely the concentration of A in the reactor. Because over addition of
B leads to product degradation, precise concentration estimates of A as a function of time are necessary to
complete the reaction without over addition of B. We suppose only temperature measurements corrupted
with sensor noise are available. Furthermore, we suppose the exact reaction kinetics are unknown with
the exception of the heat of reaction AH,.. The extent of reaction is estimated using reaction calorimetry
(cf. Schuler and Schmidt (1992)).

Under standard assumptions, such as negligible potential and kinetic energy effects, constant
density, uniformly homogeneous mixture, and no phase transition, we simulated the reactor using the
following model

V = F,

A = —koexp(—%)AB2—§A,

B = —2k0exp(—%)AB2+§(C’Bf—B),

T = —?g;‘koexp(-%)ABM%@-TH
%(TC—T).

The model parameters are listed in Table 2.4. The flowrate profile, though scaled differently, is the
one used in the operation of the industrial reactor described by Rawlings et al. (1989). To account for
imperfect cooling and modeling inaccuracies, we assumed the cooling water temperature fluctuates. The
flowrate profile and the cooling water temperature used in the simulation are shown in Figure 2.15. We
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Figure 2.12: Leak estimates in the tank # 2.
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Figure 2.14: Reactor Schematic
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Table 2.4: Parameters for Example 2.4.3

suppose the temperature measurements are available every 30 seconds corrupted with zero mean and

unit variance Gaussian noise.

The estimator has available only the following simplified time-varying linear model based on

reaction calorimetry ©:

er =

F,

F
——A4
r V,

F
2r + V(CBf — B),
AH, F UA

—(Ty -T)+ ——=(T.—-T),
pC’pr+V( i )+pC’pV(T T)
dw.

SWe also considered a model where the cooling water temperature fluctuations were included as a second disturbance.

Our simulation results were no different.
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The trick in reaction calorimetry is to estimate the reaction rate r(-) from the energy balance. The
model was discretized with a zero-order hold and a sampling period of 30 seconds. The horizon length
was M =10

The advantage of the simplified model is that the reaction kinetics need not be known. However,
as pointed out by (DeValliere and Bonvin 1990) and (M’hamdi, Helbig, Abel and Marquardt 1996),
spurious estimates may result due to negative estimates of the reaction rate. We therefore constrain
both the reaction rate and concentrations to be positive. We tuned the estimator with Q = I and Iy = I
and initialized the estimator with the “true” initial conditions.

The results of the simulation are shown in Figure 2.16. Both the Kalman filter and MHE overes-
timate the actual reaction rate. This mismatch is due to fluctuations in the cooling water temperature.
The addition of the constraints prevents MHE from estimating negative reaction rates and negative
concentrations of A. Because MHE does not estimate negative reaction rates, the MHE estimate of
reaction rate is larger than the Kalman filter estimate. Consequently, without the constraint on the
concentrations, MHE would estimate also negative concentrations of A. The reason that the estimates
are positive, even though the estimate of the reaction rate is too large, is due to smoothing. At each
sampling time, MHE semi-implicitly estimates the entire reaction rate and concentration profile. We
refer to these estimates as the smoothed estimates (i.e. #;7 for k£ < T'). The results shown in Figure 2.16
are only the tail of the estimated trajectory (i.e. #7 := &7 7_) and need not mutually satisfy the energy
and mass balances. The smoothed estimates, however, mutually satisfy the energy and mass balances.

2.5 Conclusions

We have discussed moving horizon estimation (MHE) in the context of constrained process monitoring.
MHE, as we have demonstrated through examples, is a practical and powerful strategy for constrained
process monitoring. MHE allows the use of additional physical knowledge about systems, such as con-
straints and nonlinear dynamics, unavailable with other methods. While the ability to incorporate
nonlinear dynamics is important, the distinguishing feature of MHE is the ability to incorporate in-
equality constraints. One can show, in particular, that MHE reduces to a Kalman filter or iterated
extended Kalman filter when constraints are not present. Hence, we may view MHE as an extension of
Kalman filtering.

Inequality constraints arise in many different contexts. We have illustrated the importance of
inequality constraints in the following situations.

Truncated Distributions One often possesses prior knowledge in the form of bounds on the distur-
bances, state variables, and unknown parameters. If we consider Example 2.4.2, the leaks and tank
volumes are always positive. Failure to incorporate this information in the estimator, as illustrated
in Examples 2.4.1 and 2.4.2, may lead to poor estimates.

Asymmetric distributions By piecing together truncated distributions, it is possible to generate
asymmetric distributions. The need for asymmetric distributions is illustrated in Example 2.4.2,
where mass enters the equalizing tank at a different frequency and magnitude than it would leave
at. The inability to model this behavior may lead to spurious estimates as illustrated by the
Kalman filter’s low estimate of the total losses due to the leak.

Model Simplification Whereas truncated and asymmetric distributions only alter the description of
the unknown disturbances, state constraints alter the probabilistic structure of the estimation
problem by correlating the disturbances with the state. The advantage is that one can use the
correlations to simplify the model significantly. This idea is illustrated in Example 2.4.3 where
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a simplified model of the semibatch reactor using reaction calorimetry coupled with constraints
allows for accurate concentration estimates.

Reconciling Conservation Laws Poor measurements may lead to estimates that violate the conser-
vation laws used to model the system. As one often expects the estimates to satisfy the conservation
laws, direct enforcement may require inequality constraints. In Example 2.4.3, the estimates of
the reaction rate are too high, and the estimates need to be adjusted in order to prevent nega-
tive concentration estimates. From a numerical perspective, one may use constraints to prevent
the optimization algorithm from choosing spurious iterates that lead to computational problems
regarding the solution of the conservation laws and the associated constitutive relations.

The strength and weakness of MHE is the use of mathematical programming. For reasonable
models, the optimization problems can be solved in a few seconds on desktop computers using standard
software. However, for some problems this performance is insufficient. With the increasing power of
computers and improved algorithms (i.e. algorithms now solve quadratic programs in polynomial time),
MHE will become an alternative for an expanding class of constrained process monitoring problems in
the near future.
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Chapter 3

Constrained State Estimation for

Nonlinear Discrete-Time Systems!

3.1 Introduction

In this chapter we investigate online optimization strategies for estimating the state of systems modeled
by a nonlinear difference equation of the form

Try1 = [r(Tk, wr)
3.1
Yr = hi(zr) + vk, (3-1)

where it is known that the states and disturbances satisfy the following constraints
T € Xg, wy € Wy, v € V.

We assume, for all £ > 0, the functions fr : X x Wy — X and hg : X — RP and the sets X C R",
W, C R™, and V; C R? are closed with 0 € W, and 0 € V.

Let 2(k; 2,1, {w;}) denote the solution of the difference equation (3.1) at time k¥ when the initial
state is z at time / and the input disturbance sequences is {w; }f:l. When we consider the disturbance
free response of the system, i.e. {w;} = {0}, we use the following notational simplification z(k; z,1).
Let y(k; 2,1, {w;}) := hg(z(k; 2,1,{w;})) denote the output response of the difference equation (3.1) at
time k when the initial state is z at time [ and the input disturbance sequences is {w; };?:l. We use the
notational simplification y(k; z,1) := hg(z(k; z,1)) for the disturbance free output response of the system.
Note the difference between y;, and y(k; 2,1, {w;}). The vector y denotes the observed output at time k
and the vector y(k; 2,1, {w;}) denotes the predicted output at time £ when the initial condition at time
l is z and the disturbance sequence is {w; }f:l.

We formulate the constrained estimation problem, for 7" > 0, as the solution to the following
optimal control problem

P(T):  ®p= min_ {®r(zo,{wi}) : (w0, {wi}) € 1}

EO’{wk};f:_o
where the objective function is defined by

T-1

Or(wo, {wr}) == Y Li(wg, vk) + (o),
k=0

!Portions of this chapter were published in Rao and Rawlings (1998a) and Rao, Rawlings and Mayne
(2000)
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the constraint set is defined by

z(k;20,0,{w;}) € Xy, £k=0,...T,
Qr := (ﬂfo,{’ll)k}) : kaWkJ k:07"'7(T_1)7 s
vp =y — y(k;20,0,{w;}) € Vi, k=0,...,(T -1)

and vg := yr — y(k; 20,0, {w;}). We assume the stage cost function Ly : Wy x V; — R for all £ > 0 and
the initial penalty T : Xo — R. The initial penalty T'(-) summarizes the prior information at time k =0
and satisfies T'(Zo) = 0, where &9 € X, is the a priori most likely value of o, and T'(z) > 0 for x # Zo;
The initial penalty I'(:) is part of the data of the state estimation problem. Typically

T(z) := (z — 30)T T  (z — &),

where the matrix II is symmetric positive definite. In this case, the given data (29, 1) determines T'(-).
The solution to P;(T) at time T is the pair

(Zojz—1> {rir—1}5zg) »

and that optimal pair yields an estimate {Zx7_1}_, of the actual sequence {x }; the sequence {&7_1}{_g
is the solution of (3.1) with the initial state &o;7_1 at time k¥ = 0 and disturbance sequence {wk‘T_l};{;g ,
ie.

Zpr—1 = x(k; 20 7-1,0, {Wjj7-1})-

To simplify notation Z; := £;;_1, where Zo_; = Zo.

We refer to the formulation P, (T) as the full information problem and & as the full information
estimate of z, because all of the available information {yk}fz_ol is processed. The problem Py (T") has
T stages, so the computational complexity scales at least linearly with 7. Unless the process is linear,
unconstrained, and the cost functions are quadratic, in which case the optimal estimator is the Kalman
filter and the solution is obtained recursively, the online solution of P (T') is impractical, because the
computational burden increases with time. To make the problem tractable, we need to bound the
problem size. One strategy to reduce P;(T) to a fixed-dimension optimal control problem is to employ
a moving horizon approximation. Unlike the full information problem, MHE does not estimate the
full state sequence {zy}7_,. Rather, MHE estimates the truncated sequence {zj}7_s_n. The key to
preserving stability and performance is how one approximately summarizes the past data.

Consider again the problem P;(T). We can arrange the objective function by breaking the time
interval into two pieces as follows.

T-N-1

T—1 -
Or(wo, {we}) = Y. Li(we,ve) + Y Li(wk,ve) + (o).
k=T-N k=0
Because we use a state-variable description of the system, the quantity
T—1

Ly (wg,vr)
E=T—N

depends only on the state z7_ x and the sequences {wy, vk}fg%_ - Exploiting the relation using forward
dynamic programming, we can establish the equivalence between a full information problem and an
estimation problem with a fixed-size estimation window.

Consider the reachable set of states at time 7 generated by a feasible initial condition zy and
disturbance sequence {wy}725:

Rr =A{2(7520,0,{w;}) : (z0,{w;}) € O}
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We define the arrival cost 2 at time 7 and for the state z € R, as

Zr(2) ;= min__ {®-(wo,{wi}) : (w0, {wr}) € Qr, x(7520,0,{w;}) = 2}.

zo,{wi}; s

It follows that Zo(-) = I'(+). Arrival cost is a fundamental concept in MHE, because we can reformulate
Py (T), for T > N, as the following equivalent optimal control problem

—1

Z Li(wk,v) + Zr-n(2) : (2, {wr}) € Qg} ,

T—1
s{wehilr v LT N

P/(T) &% =  min {

where the constraint set is defined by

z(k;2,T — N,{w;}) € Xy, k= (T —-N),...,T,

wr € Wy, k=T -N),... (T -1),

vr, =y —y(k; 2, T — N,{w;}) € Vg,
k=(T—N),...,(T—-1)

QIR (z,{wr}) :

and vy = yr, —y(k;2,T — N,{wi}). When T < N, the optimal control problem Pj(T) is defined to
be P;(T). It is relatively straightforward to demonstrate the equivalence of the solutions to P;(T") and
P{(T) using forward dynamic programming (c.f. (Bersekas 1995a)).

Optimality guarantees Zr(z) > ®% for all z € Ry and Zr (&) = ®%. We can view, therefore,
the arrival cost as an equivalent statistic (Striebel 1965) for summarizing the past data {yx};_a' ' not
explicitly accounted for in the objective function of P/(T). The arrival cost serves as an equivalent
statistic by penalizing the deviation of zr_n away from Zr_n. If we have high (low) confidence in the
optimal estimate Z7_n, then the cost of choosing zr_n far away from Zr_ N is large (small).

For the vast majority of systems, we do not possess an algebraic expression for the arrival cost.
Notable exceptions are unconstrained linear systems with quadratic objectives, where the estimate z; is
now the standard Kalman estimate of the state z;. Assume the functions fi(-) and hy(-) are defined by

fe(zr) == Avz + Grw,  hg(z) := Cyz,
and the stage penalties L(-) are defined by
Li(w,v) := wTQ,le + UTR,;lv,

where the matrices Jr and Ry are symmetric positive definite. For this case, the initial penalty is defined
as

V== .
[(z) := (z — #0) T, (x — &),
and the arrival cost is given by

Z(2) == (2 — &) T (2 — &) + ®; (3.2)

assuming the matrix II; is invertible. The matrix sequence {II;} is obtained by solving the matrix
Riccati equation

O = GjQ;GT + AJIAT — AIL;CT(R; + CIL,CF) 1O, AT (3.3)

20ther researchers have used the term cost to come (c.f (Basar and Bernhard 1995)) or cost to arrive (c.f. (Verdu
and Poor 1987)).
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with the initial condition IIy = IIy. One obtains this result by deriving the deterministic Kalman filter
using forward dynamic programming (c.f. Cox (1964)).

When the system is nonlinear or constrained, an algebraic expression for the arrival cost does not
exist, yet we require one to implement successfully the estimator. Ideally, we want the moving horizon
estimate as close as possible to the full information estimate. Omne solution is to formulate MHE as
the solution to a numerically tractable though approximate version of PJ(T). An approximation Z;(-)
of the arrival cost Z;(-) may be used to account for the data not included in the estimation window.
The past data are accounted for approximately with our choice of 2%3() by penalizing deviation away
from the past estimate £; in accordance with our confidence in the estimate. Because this choice is
an approximation, we need to ensure that MHE does not improperly weight the old data. Estimator
divergence may result if the approximation biases the past data by weighting the past estimates too
strongly, while performance may suffer if the approximation insufficiently weights the past data. In
Section 3.4 we discuss the stability implications of approximate representations of the arrival cost.

We formulate, for 7' > N, the moving horizon approximation to the full information estimation
problem, or MHE, as the following optimal control problem

T-1
Py (T) ‘;T = IanIl1 { Z Ly (wg, vg) +Z‘?T_N(Z) 2 (2,{wy}) € Qg}
zlwnhiZron \p=17_N

where vy = yr — y(k; 2,7 — N,{w;}) and 22']- : X; = Rfor all j > 0. The moving horizon cost qAST
is an approximation of ®. obtained by replacing the (uncomputable) arrival cost Z7_n(-) with an
approximation Z7_y(-). We choose Zy(-) = I'(-). When T < N, the optimal control problem P»(T) is
defined to be Pi(T). The solution to P»(T) at time T is the pair (2*, {wk‘T -1 n), which, when
used as data in the system equation (3.1), yields {a:le M N e

j?|hT—1 = z(k; 2", T — N, {HAJ;"& -

For simplicity £7" := &%) ]l 1 where a;(';‘lh 1 = Zo.
One strategy to approximate the arrival cost Zr(-) is to employ a first order Taylor series

approximation of the model (3.1) around the estimated trajectory {#p*}7_,. This strategy yields an

extended Kalman filter covariance update formula for constructing Z7(-). We interpret this strategy
as a neighboring extremal paths strategy in the context of estimation. Neighboring extremal paths
are used to generate approximate optimal feedback laws for nonlinear systems by employing extended
linearization (Bryson and Ho 1975). The basic idea is as follows. If the deviation from the optimal path
is small, then a linear approximation at the optimal path accurately describes the neighboring path.
Suppose the model functions fi(-) and hg(-) and the cost functions Lg(-) are sufficiently smooth

and
[(z) = (z — 40) T,  (z — o).
Let
Ay = Ofk(z,0) ’ Gy = Ofi(@F", w) ’ Cp = Ohi () ’
9 |y ow w0 0T |pmn
k k

denote the linearized dynamics of the system (3.1) and

- 0L, (0,v) O?L, (w,v)

R = = Ny = 2= 22
dvdvT an k owdv" |,y e

Qfl — 62Lk(w7v)
E dwowT

’

mh
w=0, &}
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denote the linearized stage penalties L(-), then, if we assume for simplicity Ny = 0, we approximate
the arrival cost as

A

Zr(z) = (z — 85 17" (2 — 35°) + ér,

assuming the matrix IIy is invertible, where the matrix sequence {II;} is obtained by solving the matrix
Riccati equation (3.3) subject to the initial condition ITy = IIy. This result is equivalent to the covariance
update formula for the extended Kalman filter. See Jazwinski (1970) for further details.

The remaining chapter is organized as follows. Section 3.2 introduces the notation, definitions,
and basic assumptions necessary for establishing stability. We establish sufficient conditions for the
stability of the full information estimator in Section 3.3. In Section 3.4, we extent the results of Section 3.3
to derive sufficient condition for the stability of MHE. We also propose a prototype algorithm for MHE.
Obtaining global solutions to nonlinear optimal control problems presents a formidable barrier to online
implementation. In Section 3.5, we investigate suboptimal strategies that guarantee stability, but do not
require global solutions. In Section 3.6, we examine the dual relationship of MHE and receding horizon
control.

3.2 Notation, Definitions, and Basic Assumptions

The Cartesian product x5 ;A of a set A is denoted by AN. We use the symbol || - || to denote any
vector norm in R™ (where the dimension n follows from context). Let R>o denote the nonnegative real
numbers, C(R™) denote the space of lower semi-continuous functions that map from R” to R, and I5(R"™)
denote the space of all sequences {aj} in R* for which 32 |ax|? < oo, where |z| = VaTz. For € > 0,
B, :=={z : ||z|| < €}. Let aV b := max{a,b}. For notational simplicity, we make that following
definition: () == (*)g5_1-

Definition 3.2.1 A function a : R>9 = Ryo is o K-function if it is continuous, strictly monotone
increasing, a(z) > 0 for x # 0, a(0) =0, and lim,_, a(z) = co.

Throughout the paper we use the following elementary properties of K-functions.

Fact 3.2.2 Suppose a(-) is a K-function. Then, the function a(-) and its inverse a™' : R>g = R>o are
continuous (Royden 1988). Furthermore, a~'(-) is a K-function.

Fact 3.2.3 The space of K-functions is closed under addition, composition, and positive scalar multi-
plication. For example, if a(-) and 5(-) are K-functions, then a o B(-), a(-) + B(-), ca(-) for ¢ > 0 are

K-functions.

Definition 3.2.4 A system is uniformly observable if there exists a positive integer N, and a K-
function o(-) such that for any two states z1 and xa,

N,—1
o(llzy = zall) < Y ly(k + Gi 21, k) — y(k + 322, K,
j=0

for all & > 0.

The observability condition states that if the prediction residuals are small, then the estimation error
is small. Mathematically this condition requires that the mapping from the state x to the sequence



44

{y(k + j;x,k)}jy:"o_ ! is bounded and one-to-one. When the system is linear (i.e. fr(z) = Azz and
hi(z) = Crx), then the uniform observability condition is satisfied when the observability Grammian

N-1

— iT AT 4
Vii= 30 A Ok Chns Ay
=0

is positive definite for all N > n and k& > 0.
In order to guarantee the problems P;(T") and P»(T') are well posed, we require that the model
(3.1), stage cost functions Lg(-), and initial penalty I'(:) satisfy the following conditions.

A0 The functions fi(-) and hy(-) are globally Lipschitz continuous with constants ¢y and ¢, for all
k> 0.

Al Ly(-) € C(Wy x Vi) for all £ > 0 and T'(-) € C(Xp).

A2 There exist K-functions 7(-) and ~(-) such that

n([[(w, v)[l) < Li(w, v) < y([|(w,v)]]),
n(llz = Zoll) < T(x) < v(ll2 - Zoll),

for all (w,v) € (Wy x V), z € Xo, &9 € Xg, and k > 0.

We need also to impose similar conditions on the approximate arrival cost 2k() However, unlike
the initial penalty, the minimal value of the arrival cost is greater than zero (recall Z(z) > ¢3k for all
z € X; with Z,(2r) = é) and the approximate arrival Z;(z) may not be bounded below by ||z|| for
reasons that become apparent in Section 3.4. We require instead Zj(-) satisfies the following condition.

C1 There exist K-function 7(-) such that
0 < Zk(2) — ¢r < (12 — 37*))

for all z € Xp, and T' > 0.

3.2.1 Observer Stability

The following discussion of observer stability is premised on classical Lyapunov stability theory for
dynamical systems. The concepts are completely analogous to their classical counterpart. To account
for constraints, we have modified the definition of stability in an analogous manner to Keerthi and
Gilbert (1988).

Before proceeding with the abstract definition of observer stability, we first introduce the concept
of an observer. When the state is not directly available from the measurements, it is necessary to infer
the current state of the system. The observer problems considers inferring the current state of the
following deterministic (i.e. (wg,vr) = 0) system

Tr1 = fe(xr), (3.4a)
yr = hi(zr,). (3.4b)

When the functions fi(-) and hg(-) are linear and time invariant, the Luenberger observer (Luenberger
1966, Luenberger 1971) solves the observer problem. The basic strategy of the Luenberger observer is
to design a linear output feedback law that stabilizes the error dynamics of the system (3.4). Note the
observer problem is solved if the initial condition xy is known exactly, because the model will track the
system perfectly.
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Figure 3.1: Definition of an asymptotically stable observer.

One strategy for the observer problem is to solve directly for zq. If the system (3.4) is uniformly
observable and there is sufficient data, the initial condition can be uniquely determined from the data.
This strategy was employed iteratively using moving horizon observers by Jang et al. (1986), Zimmer
(1994), Moraal and Grizzle (1995), and Michalska and Mayne (1995). The terminology moving horizon
observer is used because only the state of a deterministic system is reconstructed. This strategy is limited,
because the problem statement is an idealization: our knowledge of the true system is not complete. In
addition, state and measurement noise prevent a consistent state estimate being recovered from a fixed
window of data. By assuming a deterministic model structure, the moving horizon observer strategies
may amplify rather than filter the effect of noise on the estimate. Finally, the iterative strategies may
break down, because cost decreases are not always possible. Even though the problem statement is an
idealization, it is prudent to ask whether the estimation strategy proposed in this work can address this
simple problem. The ability to reconstruct the state of the system (3.4) from the process measurements
is what we define as observer stability.

We begin our analysis by making precise the notion of observer stability. The concept of ob-
server stability and asymptotic observer stability is equivalent to stating that the estimation error
er = ||z(k;x0,0) — ||, where xo is the initial state of the system (3.4), is bounded by ||eo|| and
converges to 0 as k — 0.

Definition 3.2.5 An estimator is an asymptotically stable observer for the system (3.4) if, for
every initial condition xo € Xo and every € > 0, there corresponds a number § > 0 and a positive integer
T such that if ||zo — #o|| < & and 2o € Xo, then ||z(T;x0,0) — 27|| < € for all T > T. Furthermore, for
all zo € Xo, 1 — x(T;%0,0) as T — 0.

3.2.2 Feasibility and Constraints

To guarantee that a solution exists to either P;(T) or P»(T'), we require that the feasible region is
nonempty. The implications of constraints are more subtle for an estimator than for a regulator. In
particular, an estimator has no control over the evolution of the state of the system (3.4). A stable
observer may not exist when the constraints are poorly chosen. For example, consider the system with
fe(:) = xp + wg, hx(-) = xx, and the initial condition g = 0. If we choose the constraints such that
Xy = {x : |z| > 1} for k > 0, then there does not exist a stable observer that is able to reconstruct the
state of the system. Furthermore, as the constraint Vj, directly relates feasibility to the outputs {yk}f:_ol,
we need, therefore, to characterize the conditions of the system generating the output measurements.
The focus of the chapter is on obtaining sufficient conditions for stability of moving horizon observers,
so we limit ourselves in the following assumption to the case when the system (3.4) generates the data.
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In addition to assuming the feasible region is nonempty, in order to guarantee a stable (constrained)
observer exits, we need to assume also that the infinite-time cost is bounded by the initial estimation
error ||zo — Zol-

A3 Suppose the system (3.4) with initial condition zo generates the data (i.e. yr = y(k;xo,0)). There
exists an initial condition x|, disturbance sequence {wy| } 320, and a K-function o(-) such that,
for all Z9 € Xo,

’Ill—r>noo (I>T($O\ooa {wk|oo}) < U(l|w0 - :i‘o”),
where, for all k > 0, (0|0, {wjjeo }) € Qi

If we suppose the system (3.4) with the initial condition ¢ satisfies the constraints z(k;xq,0) €
Xk for all k£ > 0, then we can satisfy assumption A3 if we choose Tg|o, = To and Wi = 0. Recall
0 € Wy, and 0 € V. If we choose o(-) = 7(-), where the K-function «y(-) is defined in A2, then we obtain
the stated conditions of assumption A3. In particular, for o € Xo,

Tlim ‘I’T(»'Uo\oo; {wk|oo}) =T(z0) < y(llzo — Zoll)-
—00

Indeed, the system (3.4) should satisfy the states constraint for all 2o € Xg. Constraints in estimation
should reflect additional insight about the evolution of the system. If the system does not obey the
constraints, then no additional insight is offered by constraining the state estimator, and one may, in
fact, adversely affect estimator performance.

When we consider a constrained estimator in practice, assumption A3 is, aside from theoretical
considerations, meaningless. We do not expect either the system (3.4) or even the system (3.1) generates
the data {yx}. Poorly designed constraints, therefore, may cause the constrained estimator to fail due to
infeasibility or, at the very least, perform poorly. Characterizing the set Wy, is relatively straightforward,
though one may experience problems if one improperly characterizes the sets Vj,, due to the possibility
of outliers, and Xj, for reasons discussed next. One can guarantee a solution exists to either P;(T)
or P,(T), without explicit reference to the system (3.4), if the model (3.1) and constraints satisfy the
following condition®

B1 For all T > 0, there exists (23, {w}}) € Q7.

The condition B1 is nonstandard; one usually chooses an exact model of the plant and, separately,
the characteristics of the disturbances, such as boundedness, or that the disturbances are independent
and identically distributed with known (zero) mean and variance. The properties of the model and
disturbances are distinct. Assumption B1, on the other hand, implicitly states that the model is in
error, because the disturbance free evolution of the system (3.1), i.e. z(k;zo,0), may not automatically
satisfy the state constraints for some zo € Xy. Enforcing the state constraints may require a non-zero
disturbance sequence {wy}, thus implicitly using {w} to account for model error. Furthermore, state
constraints may correlate the disturbances {wy,}. If we consider, for example, the system 41 = =y, +wg
subject to the constraints z; > 0 and wy < 0, then a large (negative) wqy implies the future {wy} are
small. Alternatively, the disturbance wy, is correlated with the state xj. If x is small, then wy needs to
be small in order to satisfy the state constraint.

Suppose instead the constraints Xj, denote the subset of R™ for which the model (3.1) is defined.
In particular, the sets X}, define the flow of the difference equation (3.1) for a subset of initial conditions
Xo.

3The conditions of the existence results, Propositions 3.3.1 and 3.4.3, are satisfied by design if assumption A3 is replaced
with either B1 or B2. Existence is established if the pair |, and {wg|oo} is replaced with the pair zj and {w}}
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B2 For all T > 0 and z§ € Xo, (2}, {wi}) € Qr for all disturbances {w}}; -, satisfying the constraints
1
wk S Wk .

Condition B2, obviously, implies B1. Furthermore, the “statistics” of the disturbances wy, are decoupled
from the state of the system z. Our decision to include B1 is practically motivated. One is typically
unable, or unwilling, to model separately the system and disturbances; the modeling effort is too great,
and the disturbances wy and vy are convenient to account for model uncertainty. State constraints
may then be necessary to complete the model (e.g. complete the conservation laws). The advantage
of state constraints is that they allow for simplified models (c.f. (M’hamdi et al. 1996)). While not
always theoretically satisfying, state constraints may be practically appealing. The issues regarding
state constraints have not been resolved completely, and the practitioner should be cognizant of the
differences between, and possible implications of, B1 and B2.

3.3 Full Information Estimation

Full information implies that at time 7" the data {yk}kT;Ol are employed; the complexity of the estimation
problem, therefore, increases with time 7. However, there is no approximation error in contrast to the
moving horizon estimator where an estimate Zy_(-) of the arrival cost Z7_n(-) is employed. Hence,
we consider first the simpler full information case. We begin by providing sufficient conditions for the
existence of a solution to Py (T"). We then prove stability.

Proposition 3.3.1 If assumptions A0-A3 hold, then a solution exists to Pi(T) for all 9 € Xo and
T >0.

Proof. By assumption A3, the feasible region is non-empty for all 7. Let &% = Q7 (20|00 {Wk|oo })
denote the finite cost, by A2, associated with zg|, and the sequence {wk|oo}kT:_01. Consider the set

A={(z{we}iS) ¢ (2 {we}) € Qr, @r(z, {wi}) < @}

By assumption A0 and A1, the function ®7(-) is lower semi-continuous. The set

F={(z.{wr}{=y) : ®7(z, {wi}) € [0, 23]}

is closed, because the inverse image of a closed set under a lower semi-continuous function is closed (Berge
1963). The set Qr is closed, because the functions fi(-) and hg(-) are continuous and the sets X, Wy,
and V; are closed for all ¥ > 0. The set A is closed, because it is the intersection of the closed sets
F and Qr. By assumption A2, there exists a K-function 7(-) such that Li(w,v) > n(|lw,v|]) and
I'(z) > n(||z — #o||). These inequalities imply the set F' is also bounded, because I'(zg) < &1 and
Ly(wg,vg) < ®L for K = 0,...,T — 1. The set A is bounded, because A C F. Hence, the set A is

compact. Existence of a solution follows from the Weierstrass Maximum Theorem. O

Before proving stability, we require the following technical lemma.

Lemma 3.3.2 Let zy € Xg. Suppose A0-A2 are true and the system (3.1) is uniformly observable.
For all N > N,, if

1

> Li(@gyr—1, k1) = 0
k=T—N

then ||z(T;29,0) — 27| = 0 for T > N.

Proof. The proof is given in Appendix 3.8.1. O
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The following proposition establishes stability by demonstrating that the optimal cost function
®; is nondecreasing and bounded above uniformly for all ¥ > 0 by the initial estimation error ||zo — Zo||.

Proposition 3.3.3 If assumptions A0-A3 hold, and the system (3.1) is uniformly observable, then,
for all Zg € Xy, the full information estimator is an asymptotically stable observer for the system (3.4).

Proof. We assume throughout the proof T > N, (set T = N,). We first demonstrate convergence.
Proposition 3.3.1 guarantees a solution exists for all & > 0. By optimality and A3 , we have that
®; < o(||lzo — &ol|) for all k£ > 0. Recall, zo denotes the initial condition of the system (3.4). Writing
out the cost function explicitly, we regroup the optimal cost as follows

T-1
o = Z Lk(wk|T_1,@k|T—1) + 11(5§0|T—1)’
k=0
T—2
= LT—l(wT—l\T—I;'DT—HT—l) + Z Lk(wk\T—laﬁk\T—l) + 1-‘('ij|T—1)'
k=0

Because {1[),9|T_1}f;02 and #g7_; satisfy the constraints in problem P;(T" — 1), optimality implies the
following inequality

!

-2

Ly (Wgr—1, 007 1) + T(@ojr—1) > 74
0

~
Il

This inequality, in turn, implies
&7 — @7y > Ly 1 (dr_1y7-1,07-1)7-1),

so the sequence {®} } is monotone nondecreasing. By A3 and optimality, this sequence is bounded above
by [|zo — #o||- Therefore, the sequence of optimal costs {®}} converges to @3, < 0o, and the partial sum

T-1
> Ly(igr—1,0k7-1) = 0,
k=T-N,
as T' — oo. By Lemma 3.3.2, the estimation error ||z(T'; zo,0) — Zr|| — 0 as claimed.
To prove stability, let € > 0 and choose g > 0 as specified by Lemma 3.3.2 such that if
T-1
Z Ly (@g—1, 0% 7-1) < 0
k=T—N,
then ||z(T; zo,0) — Z7|| < € for all T > N,. If we choose § > 0 such that § < o 1(p) (the existence of
o~ 1(-) follows from Fact 3.2.2), then we obtain the following inequality for all T' > N,:

T-1
a(d) > ZLk(@MT—hﬁk\T—l)+F(570\T—1)
k=0
T

> Y Li(dgyr 1, Ogra)-

-1
k=T—-N,

Hence, if the initial estimation error ||zg — Zo|| < §, then the estimation error
(T 20,0) — Er[| <€

for all T > N, as claimed. O
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3.4 Moving Horizon Estimation

In this section we derive sufficient conditions for the stability of MHE. Our arguments closely follow
those used in Section 3.3. We begin by stating conditions on the approximate arrival cost éj (+) sufficient
to guarantee the stability of MHE. We proceed to derive conditions for the existence of a solution to
P»(T), and we then establish stability. For most nonlinear systems the approximate arrival costs are
unable to satisfy a priori the stability condition. We conclude the section, therefore, by presenting two
prototype algorithms for constrained MHE that relax the stability conditions on the approximate arrival
costs.

Ideally the approximate arrival cost 53'1() is equal to the arrival cost Z;(-). With the notable
exception of the unconstrained linear quadratic problem (i.e. the Kalman filter), closed-form expressions
for the arrival cost are generally unavailable. To guarantee stability, however, we do not need to construct
the arrival cost, but rather require instead that the approximate arrival cost satisfies the following
condition.

C2 Let
RY ={ z(r;2,7 — N, {w}) : (2, {wi}) € 2},

where RY = R, for 7 < N. For a horizon length N, any time 7 > N, and any p € RY, the
approximate arrival cost Z,(-) satisfies the inequality

Z.(p) < min

Za{wk};;}-—N

{ Y Liwnv) + 2oyl : 20D €T } (35)

N a(riz, 7 — N, {w;}) = p

subject to the initial condition Z(-) = I'(:). For 7 < N, the approximate arrival cost Z, (-) satisfies
instead the inequality Z.(-) < Z.(-).

If one views arrival cost as an equivalent statistic for the data, then the inequality (3.5) in
condition C2 states that the approximate arrival cost should not add additional “information” not
specified in the data. Loosely speaking, we say a positive function a(-) contains more information than
another positive function b(-) if a(z) > b(z) for all z of interest. If the inequality (3.5) were strict, then
condition C2 would state there should be some “forgetting” in the estimator.

Remark 3.4.1 A simple strategy to satisfy condition C2 is to define for time T the approrimate arrival
cost as Z.(-) = br. The inequality (3.5) is satisfied by definition: optimality of P2(7) guarantees that
the optimal cost qBT satisfies the inequality (3.5) for all p € RN. This construction was employed by
Muske and Rawlings (1995) to generate a stable nonlinear MHE. Without constraints, this choice yields
a deadbeat observer.

Remark 3.4.2 If we choose
Z:(2) = (2 = &) Iz — #7) + 6,

where the sequence {Il;} is obtained by solving the matriz Riccati equation (3.3) subject to the initial
condition Iy = Iy, then condition C2 is satisfied when we consider linear systems with quadratic
objectives and convex constraints. The proof of this is given in Chapter 4.

As a consequence of condition C1, motivated by Remark 3.4.1, we cannot invoke the coercivity
arguments used in Proposition 3.3.1 to establish the existence of a solution to P>(7T"). To guarantee a
solution exists, we employ the observability assumption.
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Proposition 3.4.3 If assumptions A0—A3 hold, the sequence {ZJ()} satisfies condition C1, the system
(8.4) is uniformly observable, and N > N,, then a solution exists to Py(T) for all &9 € Xo and T > 0.

Proof. The proof is given in Appendix 3.8.2. O

In the following Proposition we state our fundamental result on MHE. The argument are similar
to those used in Proposition 3.3.3. In particular, stability is established by demonstrating that the
sequence {(ﬁk} is nondecreasing and bounded above uniformly for k¥ > 0 by the initial estimation error
llzo — Zol|-

Proposition 3.4.4 If assumptions A0-A3 hold, the sequence {2,()} satisfies the condition C1 and
C2, the system (3.1) is uniformly observable, and N > N,, then, for all g € Xo, MHE is an asymptot-
ically stable observer for the system (3.4).

Proof. We first prove convergence by demonstrating that o(||zo — Z||), where o(-) is defined in A3,
is a uniform upper bound for ¢;. Recall zo denotes the initial condition of (3.4). Proposition 3.4.3
guarantees an optimal solution exists for all ¥ > 0 and #y € Xy. Assumption A2 and condition C1
guarantee, for all T' > N,
X R T—1
¢r—dr-n> D Li(bffr_y, O7r_)- (3.6)
k=T—N
We proceed using an induction argument. For 7" < N, assumption A3, optimality, and condition C2
imply
T—1

o(||lzo — @ol]) > ZLk(wk\ooavkloo)+F(m0|oo)7
k=0

> ZT('Z'T\OO)J
> Z7(T7|0)-
Condition C1 guarantees ZA(¢T|<><>) > ¢r and, therefore, o(||zg — #o||) > ¢r. Let us now assume

Z7_N(Tr_Njoo) > Z27-N(T1_N|o) for the induction argument. Utilizing the optimality principle, we
have, for all T > N,

v

o(||zo — Zol|)

T-1
min { Z Lk(wk,vk)—l—ZT,N(z):
k

zv{wk}kT;'}—N —T—N
(Z, {wk}) € Q¥7 .’L‘(T, Z,T - N7 {wJ}) = mT|oo} ’
= Z7(T7)00), (by optimality)

T-1
> min { Z Lk(wk,'l)k)-i-ZTfN(Z):

2w yiZron L pmTonN

(2, {w}) € QTIIY: z(T;2,T — N, {wj}) = $T|oo} )

v

éT(a:Tbo). (by the induction assumption and C2)

Condition C1 guarantees EE'T(mT‘OO) > ¢y for all T > 0. The sequence {qASk}, therefore, is monotone
nondecreasing and bounded above by o(||xo — Zo||). Hence, it is convergent, and the partial sum
T-1
L@y 15057 1) = 0,
k=T—N



51

as T — 00, because the summation in (3.6) is nonnegative. Lemma 3.3.2 guarantees the estimation error
[|z(T; zo,0) — Z7*|| = 0 as claimed.
To prove stability, let € > 0 and choose ¢ > 0 as specified by Lemma 3.3.2 such that if

T—1
Amh Amh
§ : Lk(wlxaT—lav?\T—l) <o
k=T—-N

then ||z(T’; zo,0) — 25| < € for all T > N,. If we choose § > 0 such that § < 0=1(p) (the existence of
o~ 1(-) follows from Fact 3.2.2), then we obtain the following inequality for all T > N > N,.

T-1
a®) > Y Li(@gy 1 1) + Zr-n @ nr)
k=T—-N
T-1
2 Z Lk(wl:]hTfla@lra}fll’fl)'
k=T—-N

Hence, if the initial estimation error ||zo — Zo|| < 4, then the estimation error
|#(T'; 20,0) — &5 < e
for all T > N as claimed. |

When the system dynamics are nonlinear, we are unable in general to construct an approximate
arrival cost that satisfies condition C2 with exception of the obvious choice Z7(-) = @r. As the proof of
Proposition 3.4.4 demonstrates, condition C2 is sufficient to guarantee o(||zo — Zol|) is a uniform upper
bound to the optimal cost ¢, for all k£ > 0. While global satisfaction of the inequality (3.5) in C2 is
ideal, we may circumvent the issue by explicitly ensuring o(-) is a uniform bound in nominal application.
Suppose the sequence of approximate arrival costs {ZJ() 5= satisfies condition C1. The purpose of
condition C2 is to ensure the sequence {Z; (Tjjc)} is monotone nonincreasing (see A3):

-1
ZAT(IL‘T|OO) < I’Ilgwn1 { Z Ly (wg,vg) + éT_N(Z) : (3.7a)
2wt lr N k=T—N
(Z,{Wk}) € an .CL'(T;Z,T—N, {w,]}) :$T|oo}a (37b)
—1 R
< Y Li(Wkioos Vkoo) + ZT-N(T1_Noo)- (3.7¢)
k=T—-N

Rather than rely on the general structure of the sequence {Z;(-)} to satisfy the inequality (3.7c), we
may force the sequence {Z;(z;|o0)} to be monotone nonincreasing explicitly by scaling the approximate
arrival costs

200« 8 (50 - 85) + &

where 3; € [0,1].

If we knew the sequence {Zk|oo } 720 defined in A3, then enforcing the inequality (3.7c) is easy.
It is sufficient to scale Z7(-) such that the inequality (3.7c) is satisfied. The problem is that we rarely
know of a sequence satisfying A3 a priori without first solving a full information estimation problem.
However, to satisfy the inequality (3.7c) at time T', we need only to know the last N elements of the
sequence {Tj|oo, wk|<x>}z:_r}, - Even this information is unavailable a priori, though we may obtain it
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online. What we need to generate online is a feasible state sequence {9, w9} "1  that is bounded
by the initial estimation error in nominal application. We can generate this feasible sequence using
Zr_ N(G) = ¢3T_ ~- Recall from Remark 3.4.1 that this choice for the approximate arrival cost yields a
stable constrained observer. Once we have a feasible sequence, we can scale Z7(-) such that it satisfies
(3.7¢).

Consider the MHE problem where we choose Z7(-) = ¢. We formulate this estimation problem
as the following optimal control problem®

N-1
Py(T): V= min { Z
k=T—

T-1
z{wrl TN

Ly (wr,ve) : (2,{wi}) € Qg} .

For T < N, P3(T) is defined to be P;(T). The solution to P3(T') is the pair
(z*, {w2|T—1}g;71’—N) )
and that optimal pair yields an estimate {ﬁrng_l}kT:T_ ~ of of the actual sequence {z}, where
Fpir_y = 2k, 2T = N, {dfp_, })-

It follows that 2] = 9. We formulate the estimation strategy as the following algorithm.

Estimation algorithm 1
Data N e N

Initialization: For T' < N do:

1. Solve Py(T) to generate {&}Y_, and {¢)}V .

2. Solve P3(T) to obtain £'8|N—1 and {¢F YV, .

3. Fork=1,...,N,set Uy = ¢ +I‘(£8|N_1).
Step 1 For T > N do:

1. Solve P3(T) to obtain 3.y ,_; and ¢
2. Set Ur =95 +Ur—_n.
3. Construct Zr_n(-) so that it satisfies C1.

4. Set

Br-n = Bfg[%ﬁ] {/3 : B (2T7N(£8“7N|T71) - ‘iT—N) +or N < UTfN} .

5. Set

~

Zr_n() < Br_n (éT—N(‘) - ¢A5T—N) + ¢r_nN

6. Solve P,(T) and obtain #7 and ¢r.

4Adding a constant to the objective function does not affect the answer. For simplicity, we choose Z}w() =0.
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Step 2 Let T < T+ 1. Go to Step 1.

Remark 3.4.5 If we choose
Zi() = (o~ &) "I (2 — &) + ¢,
where the matriz I is symmetric positive semi-definite, then C1 is automatically satisfied; let 7(-) =
(14 Amax ()G
To prove stability, we require the following lemma.

Lemma 3.4.6 Let 29 € Xo. Suppose A0-A3 are true, the system (3.1) is uniformly observable, and
N > N,, then there exists K-functions 01(-) and 6(-) such that

T—1
lz(T'; 20,0) — 27| < 61 ( Z Lk(wk|T17ﬁk|T1)>

k=T—N
and
-1
lz(T = N;20,0) — 27 nj7-1]| < 02 ( Z Lk(wleaﬁHTl))
k=T—-N
forall T > N.
Proof. The proof is given in Appendix 3.8.3. d

The stability of the proposed algorithm relies on the stability of the estimator defined by P3(T).
We know from Proposition 3.4.4 that ||2% — z(T'; zo,0)|| = 0 as T — oo. More importantly, we know
also that {¢;} € lo(R). This implies the sequence {U}} is bounded.
Proposition 3.4.7 If assumptions A0—A3 hold, the system (3.1) is uniformly observable, and N > N,,
then, for all 9 € Xo, MHE using estimation algorithm 1 is an asymptotically stable observer for the
system (3.4).
Proof.  From the preceding arguments (see the proof of Proposition 3.4.4), it suffices to show Ur
is bounded uniformly for all £ > 0 by ||z¢ — Zo||. Let V = o(||zo — Zol|) + I‘(i'glN_l). Optimality
guarantees ZkT;%fN Li(Wh|oos Vkjoo) > 7 for all T > N. Hence, by A3, we have Uy < V for all
k > N. By construction, for T > N, 2T—N(Ii.8’—N|T—1) < Ur—_n. Because (;ﬁgqulel, {uﬁngfl}) € Oy,
optimality implies c;A&T < Ur. Hence, the sequence {qASJ} is bounded above by V' and, consequently,
[|z(T; 20,0) — Zr|| = 0 as T — oc.

We now establish that V' is bounded by ||z — Z¢||. By assumption A3, 9% < o(||zo — Zol|) and,
by Lemma 3.4.6,

02(¢7V);
02 (o([lzo — Zol)) -

1)1 — ol

IA A

Hence, we obtain

Vo< ollae = doll) + 3011 — #oll),
< o(llzo = goll) + 7 (118 1 — woll + llzo — &0l ,
< a(llzo = doll) +7 02 (o (a0 — Foll)) + llzo = oll)

= w(|lzo — Zoll),

where ¥(+) results from applying condition C1 and w(-) is a K-function. The existence of the K-function
w(-) follows from Fact 3.2.3. O
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Remark 3.4.8 Estimation algorithm 1 is always solvable even in the presence of noise. Optimality
implies ¢ < Urp. Therefore, any Z;-)(-) satisfying condition C1 guarantees the existence of a B; > 0.

Example 3.4.9 (A Simple Example Demonstrating Estimation Strategy 1) Consider the scalar
system

Te+1 = L1zg + wg, Yy = Tp + vk.

This system has been studied by Muske and Rawlings (1995) and Findeisen (1997) as an example where
MHE is unstable. The following least squares objective function

2

p = > L v2 n (zr-N — E7-N)

= E wi 4+ £

T k7100 P
k=T—N

is used, where the initial penalty Z;(z;) = (z; — &;)?/P. We assume the initial condition is zo = 0 for
the process and o = 1 for the model. For a horizon of N =5, P > 4.3 was necessary for stability. For
a horizon of N =10, P > 1.05 was necessary for stability.

A comparison of the MHE with and without the proposed scaling strategy is shown in Figures 3.2
and 3.3. Without the scaling of the initial penalty, the MHE is unstable. The response of the Kalman
filter or full information solution is plotted as a benchmark. As evident from the figures, the scaling
parameter [ is reduced until the MHE is stable. Figure 3.4 shows a comparison of MHE with and
without the scaling strategy when the unscaled initial penalty is sufficiently small to guarantee stability.
In Figure 3.4, the scaling parameter 8 = 1.

The cycling effect evident in all of the figures is due to the filter update used: the dynamics of the
estimator at times T — N— to T — 1 are unrelated to the dynamics of the estimator ot times T — N and
T. One strategy to remove the cycling effect is to employ a smoothing update. Findeisen (1997) provides
a comprehensive discussion of the cycling effect. Smoothing strategies are discussed in Chapter 4

We desire A7 = 1 when Z7(-) satisfies condition C2. If we assume z(k; zo,0) € Xy for all k > 0,
then optimality and the observability assumption imply §:on NT-1 = (T — N; x0,0) for all T'> N and,
as a consequence, Ur = 2T'(zg). It follows by optimality and condition C2 that for T > N

A~

ZT(¢£"%-N|T—1) = éT(x(T — N;30,0)),

Therefore, S = 1. When the constraints only satisfy A3 or when we consider suboptimal algorithms,
estimation algorithm 1 does not guarantee S = 1 when the sequence {2%()} satisfies condition C2.
To guarantee S = 1, we need to modify estimation algorithm 1. We need specifically to construct
a state and disturbance sequence {zy,wy}3°, satisfying the state equation (3.1) and constraints. The
natural choice for the state sequence is {#9}. However, there may not exist a complementary disturbance
sequence {uw}} satisfying the state equation (3.1) and constraints (i.e. (23,{w2}) € Qr for all T > 0).
Therefore, we need to make the following assumption.

A4 For all z € Xy, 2z € Xgq1, and k > 0, there exists some w € Wy, and a K-function () such that

1. z = fi(z,w),

2. &([If (z,w) = fr(2,0)[) = [Jw]].
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Figure 3.3: Estimation error for M = 10 and P =1
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Figure 3.4: Estimation error for M =10 and P =5

Assumption A4 is easy to verify though restrictive in our framework; A4 typically requires
fe(z,w) = fr(x) + w. We hope, ideally, that the closed-loop state and disturbance estimates generate a
feasible trajectory, in that the transition from &{, to &, , is feasible. However, nowhere in our proposed
framework is this assumption necessary or expected. The full information and moving horizon estimator
implicitly recalculate the entire state and disturbance trajectory at each time interval, so, in either
formulation, feasibility of the closed-loop estimates is not directly addressed.

Estimation algorithm 2

Data N e N.

Initialization: For T' < N;
1. Solve Py(T) to generate {&7}7_, and {¢7}7_,.
2. Solve P5(T) to obtain 2q_, {23 }i_;, and {5},
3. Set Uy, = F(igw_l) +yyfork=1,... N.

Step 1 For T'> N do:

1. Solve P3(T) to obtain £%..

2. Choose wr_1 such that

& = froa (B, ®r1).
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3. Set
Ur = Ly_1(®r—1,9F_,) + Ur_1,
where 9%, = yr_1 — hr—1(8%_,).

4. Construct Zr_ n(-) so that it satisfies C1.

5. Solve the problem

Br-N = ﬁfg[%?i] {/3 1 B (Z?TfN(-ﬁg‘—N) - QgT—N) +ér_n < UTfN} .

6. Let

Zr_n() & Br_n (Z%T—N(‘) - <]3T—N) +o7-N

7. Solve P,(T) and obtain #7 and ¢y

Step 2 Let T < T+ 1. Go to Step 1.

Lemma 3.4.10 If assumptions A0-A4 hold, the system (3.4) is uniformly observable, and N > N,,
then there exists a K-function u(-) such that

Li(@r, 97) < p(Wp) V u(Wisn)
for allk > N.

Proof. The proof is given in Appendix 3.8.4. O

Proposition 3.4.11 If assumptions A0-A4 hold, the K-function u(-) defined in Lemma 3.4.10 is locally
Lipschitz continuous at the origin, the system (3.1) is uniformly observable, and N > N,, then, for all
%o € Xo, MHE using the estimation algorithm 2 is an asymptotically stable observer for the system (3.4).

Proof. From the preceding arguments (see the proofs of Propositions 3.4.4 and 3.4.7), it suffices to
show the quantity

_11mEva
OOT—)OO E\WEk, Vg

is bounded by ||zo — Zo||- By assumption, there exists an € > 0 and K > 0 such that for all z €
Be,pu(z) < Kl|z||. Optimality and assumption A3 guarantee Y p- n Y5 < No(||zo — Zo||). Therefore,
there exists M > 0 such that >~ ,, ¥% < € and, consequently, >y, Li(Wk, 09) < 2NKo(||zo — Zol|).
The summation Y, n Lk (W, )) is convergent and, hence,

o0

S L, i) < 2u(Nollzo — ol))-
k=N

Therefore, the proposition follows as claimed. O
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Remark 3.4.12 If we assume the K-functions v(-) defined in A1 and x(-) defined in A4 are locally
Lipschitz continuous at the origin, the stage cost functions are quadratic (i.e. Ly(w,v) = wTka+vaRvk
), and ©(-) = a||()||* for some a > 0 where the K-function () is defined in Definition 3.2.4, then the
K-function p(-) defined in Lemma 3.4.10 is locally Lipschitz continuous at the origin.

Proposition 3.4.13 Suppose A0-A4 are true, the sequence {ZAJ()} satisfies C2, the system (8.1) is
uniformly observable, and N > N,. Then, for all zo € Xo, Br = 1 in estimation algorithm 2 for all
T >0.

Proof. We proceed using an induction argument. For T < N, we have

(ZL'(), {U)k}) c QT

29(:%) < min {@T(wo,{wk}) : 2(T; 0,0, {w;}) = &5 } < Ur.

zo,{wk}r_o

Now consider T > N and assume 2% (#%_5) < Ur_n for the induction argument. Then, we obtain
the following inequalities

M’ﬂ

UT Ukv wk + ZAT—N(‘@%—N)a
k=N
T-1 R
Z min Z Lk(wk,vk)—l—ZT,N(z) :
{wk}z:Tl—N k=T—-N
_ 20
QN = .'L'T7
G AD €O e r = N ) = 4 ]
T-1
> miTn1 z Li(wg,ve) + Zr-n(2) :
z{wet 2N k=T—N
(z,{wi}) € QF, z(T;2,T — N, {wi}) = :EOT} ,
> Zr(a%).
Hence, the proposition follows. O

The strength of estimation strategy 2 over estimation strategy 1 is clearly the result of Propo-
sition 3.4.13: if {Z]O()} satisfies assumption C2, then S = 1. The weakness is clearly assumption A4
and the assumption of local Lipschitz continuity at the origin.

Remark 3.4.14 The system (3.4) need not generate the data for the result of Proposition 3.4.18 to
hold. The result holds regardless of which system generates the data. Furthermore, estimation algorithm
2 is always solvable even in the presence of noise. See Remark 3.4.8.

3.5 Suboptimal Implementation

To guarantee stability in the proposed state estimation strategies, we require a global solution to both
P,(T) and P5(T'). This computational requirement presents a formidable barrier to online implemen-
tation. Aside from the computational burden, optimization may not yield global solutions unless the
problem is convex. Convexity is restrictive, because the functions fi(-) and hy(-) describing the system
(3.1) need to be affine. Without convexity, we can reasonably expect only a local solution to P> (T) and
P;(T). Strategies exist for finding a global solution, though they are currently impractical for online
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implementation. The difficulty in global optimization is not finding a solution, but rather verifying
whether a particular solution is global. Unless global information such as lower bounds or Lipschitz
constants are available, one needs to sample a dense subset of the decision space in order to guarantee a
particular solution is global (Stephens and Baritompa 1998). As global information is rarely available,
we need to adjust the MHE algorithm to allow for local solutions. However, even finding a local solution
may be impractical for online implementation; often the optimization algorithm may not converge in
the requisite time. We would prefer, instead of requiring a local solution, if a cost reduction is sufficient
to guarantee stability. We refer to a solution that yields only a feasible cost reduction as a suboptimal
solution. Mayne (1995b) provides a discussion of the computational issues in receding horizon control
(RHC), and most of these issues translate directly to MHE.

One potential solution for reducing the computational complexity of MHE is the suboptimal
strategy for RHC first proposed by Michalska and Mayne (1993) and further developed in discrete time
by Scokaert, Mayne and Rawlings (1999). Instead of requiring a global minimum to the optimization
problem in RHC, the authors demonstrate a feasible trajectory is sufficient for stability. Further im-
provements (i.e. a reduced cost) in the control are possible during the sampling period if time permits,
but they are not necessary for stability. The idea substantially reduces the complexity of the control
problem, because closed-loop stability does not necessitate a global or even a local solution to the opti-
mization problem. This result is also applicable to MHE. A solution to P;(T') establishes feasibility in
the state estimation problem. So long as Ur bounds suboptimal value <;3’T of the cost function in P(T),
the estimator is stable. Between the sampling periods, the optimizer may attempt to improve the value
of (ﬁ’T However, a local or global minimum is not required. While this reduces the computational burden
involved in solving P»(T), we still require a global solution to Ps(T).

One strategy to relax the requirement of a global solution to P3(T) is the moving horizon observer
proposed by Michalska and Mayne (1995). Instead of requiring a global solution, they propose to reduce
exponentially the cost Zf:_%f ~ Lk(wg,vr) by imposing the reduction condition 97 < ptpr._ 5 for some
scalar p € (0,1), where ¢} denotes the suboptimal value of the cost function. Without constraints
it is straightforward to translate their result to MHE, because P3(T) is equivalent to the Mayne and
Michalska observer. We could impose a related reduction condition on the cost function in P3(T) for
MHE, and then scale the terminal penalty appropriately. This gradual reduction allows us to circumvent
the need for a global minimum to P3 (7). When constraints are present, it is not always possible to reduce
the cost function in P3(T'), even in nominal application. Otherwise, when constraints are not present,
¥4 = 0 and we can always satisfy the condition ¢ < py/._5. One can account for the limitations
imposed by constraints in nominal application by adding a sequence of decreasing slack variables.

Before presenting the two suboptimal strategies, we provide first our definition of a suboptimal
solution.

Definition 3.5.1 ForT > N, we say the pair (;ﬁ%’L_NlT_l, {wp" {;%—N|T—1) is a suboptimal solution

to P»(T) with respect to some property S if the pair is an element of Q& and satisfies the property S.
Furthermore, let

T-1

~ N ~ 5 ~

Py = E L(wy7r—1, 0 fr—1) + 20—~ @7 Nj7-1)
T-N

denote the suboptimal cost.

Definition 3.5.2 For T > N, we say the pair (',i'g“fN\Tfp {ﬁ)g}f:_%_N‘T_l) is a suboptimal solution

to P3(T') with respect to some property S if the pair is an element of QIIY and satisfies the property S.
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Furthermore, let

T-1

~0 ~0
Yr = Z L(wk|T—1a%\T—1)
T-N

denote the suboptimal cost.

Suboptimal estimation algorithm 1

Data N €N, p e (0,1), and {s}32, € l2(R>0)

Initialization: For T < N do:
1. Solve (suboptimally) P,(T) to generate {#;}N_, and {¢}}N,.
2. Solve (suboptimally) P3(T) to obtain :i‘gl N and {Y .
3. Fork=1,...,N,set Uy = 9}, +F(£8|N71).

Step 1 For T > N do:

1. Solve P;(T) suboptimally with respect to the inequality constraint
Y < pYy_n + ST,
to obtain i’OT—N|T_1 and Y.
2. Set Ur = + Ur_n.
3. Construct Z7_ ~(-) so that it satisfies C1.

4. Set

Br-n = Jmax {ﬁ’ B (2T*N(i'(7)’—N|T—1) - @'T_N) + ¢y < UT,N} :

5. Set
Zr_n() + Br-n (2T—N(') - ‘»ZAS!T—N) +r N
6. Solve P»(T) suboptimally with respect to the constraint
¢y < Ur
to obtain 7 and d;’T

Step 2 Let T < T+ 1. Go to Step 1.

The choice of the slack sequence {s;} is the challenge in implementing either one of the subop-
timal strategies. One possibility is an exponentially decreasing sequence. For example, s;, = s* for some
s € (0,1). The following proposition proves the existence of a bounded slack sequence.
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Proposition 3.5.3 If assumptions A0—A3 hold, the system (3.1) is uniformly observable, and N > N,,
then there exists a sequence {sk}z’;o € l2(]R20) and a suboptimal solution to Ps(T) such that

Yy < pbp_n + ST

Proof. We know from Proposition 3.4.4 that the series Y~ , ¢% < oo. If we choose s, = 1}, then the
proposition follows by inspection. O

In order to guarantee stability for suboptimal estimation strategy 1, we require the following
assumption that states if the initial estimation error is small, then the suboptimal solution is also small.

A5 Suppose the system (3.4) with initial condition zy generates the data (i.e. yx = y(k;xo,0)). There
exists a K-function o4 () such that, for N > N,,

2

L (@} 5, yn) < 01(l|zo — Zol])
0

~
i

where the sequence {@} -, ) NI} denote the suboptimal solution to P3(N). Furthermore, there
exists a K-function o2 (-) and a sequence {s;} € l2(R>o) such that ¢ < pipy_n+s7 forall T > N
and

oo
> sk < oa(|lo — o).
k=0

Proposition 3.5.4 If assumptions A0-A3 and A5 hold, the system (3.1) is uniformly observable, and
N > N,, then MHE using suboptimal algorithm 1 is an asymptotically stable observer for the system

(3.4)-

Proof. From the preceding arguments (see the proofs of Proposition 3.4.4 and 3.4.7), it suffices to show
Ur is bounded uniformly by ||zg — &o|| for all T > 0. For arbitrary j, we have the following inequality

J
in <P N+ Y0 sk

k=2
This inequality implies that the series
(o] oo ) co J
DU SPTRD 3) SV (332)
j=1 3=0 3=0 k=2
1 A

Using assumption A5 and (3.8b) we have

oo
1 R .
> Win < = (o1(llzo — Zoll) + o2(l|z0 — Zoll)) ,
Jj=1

and the proposition follows as claimed. d
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Suboptimal estimation algorithm 2
Data N €N, p € (0,1), and {5}, € l2(R>0).
Initialization: For T < N;
1. Solve (suboptimally) Py(T) to generate {&7}7_, and {¢7}T_,.
2. Solve (suboptimally) P(T) to obtain &J;._,, {2937, and {y}} ;.
3. Set Uy =T(& y_,) + ¢y for k=1,...,N.
Step 1 For T'> N do:
1. Solve P;(T') suboptimally with respect to the inequality constraint
Y1 < pYr_pn + 5T,
to obtain £% and ..
2. Choose wr_; such that
8 = fro1(@7_y, @r-1).
3. Set
Ur = Ly—1(07—1,9%_4) + Ur_1,
where 9% | =yr_1 — hr_1(8%_,).
4. Construct Zr_n(-) so that it satisfies C1.

5. Solve the problem

Br_n = Jnax, {5 : B (?Z'T—N(@OLN) - QAS!T—N) +ép N < UT—N} :

6. Let
Zr n() + Br-n (Z}T—N(') - qBIT—N) + N
7. Solve P»(T') suboptimally with respect to the constraint
¢ < Ur
to obtain Z7 and d;’T

Step 2 Let T < T + 1. Go to Step 1.

Lemma 3.5.5 If assumptions A0-A4 hold, the system (3.4) is uniformly observable, and N > N,,
then there exists a K-function u(-) such that

L (wr, o) < pu(93) V 1(Phtr)
for all k> N.
Proof. The proof is identical to Lemma 3.4.10. O
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Proposition 3.5.6 If assumptions A0-A5 hold, the K-function u(-) defined in Lemma 3.5.5 is locally
Lipschitz continuous at the origin, the system (8.1) is uniformly observable, and N > N,, then MHE
using suboptimal strategy 2 is an asymptotically stable observer for the system (3.4).

Proof. It suffices in light of Propositions 3.4.11 to establish

T—o0

T—-1
Uso = lim Y Ly(,})
k=N

is bounded by ||zo — £o||- By assumption (see Proposition 3.5.4)

oo N R .
> < (o1(llwo — Zoll) + o2 ([lzo — Zoll)) -
k=N 1=p

From Lemma 3.5.5, we have

> Li(we, ) < 2u (1]1/.p (o1(llwo — Zoll) + o2 ([0 — fﬁo“))) ;

k=N

c(||lzo — Zol|),

and the lemma, follows as claimed. O

Proposition 3.5.7 If assumptions A0-A5 hold, the K-function u(-) defined in Lemma 3.5.5 is locally
Lipschitz continuous at the origin, the sequence {Z;(-)} satisfies C2, the system (3.1) is uniformly
observable, and N > N,, then Bt =1 in suboptimal estimation algorithm 2 for oll T > 0.

For real systems where measurement, and state noise are present, we cannot implement either
suboptimal strategies 1 or 2; it is unreasonable to assume a decreasing cost. However, the goal of
the preceding discussion was mot to generate an implementable strategy. Rather, our motive was to
demonstrate the possibility of deriving sufficient conditions for a stable suboptimal estimation strategy.
In application one should solve problems P»(T) and P3(T) to the best of one’s resources given the
particular algorithmic and time constraints. If optimization yields satisfactory solutions, then we may
expect reasonable performance in light of Propositions 3.5.4 and 3.5.6. In our experience, optimizers
yield excellent results even without any guarantees of global optimality.

The difficulty in implementing the suboptimal strategies is our definition of stability. We cannot
realize asymptotic stability in application. Due to state noise, we do not expect the state estimate
to converge to the true state of the system even with global solutions to P»(T') and Ps(T"). Our goal
in modeling state noise is to account for this fact. A possible question at this point is why have we
concentrated our efforts on demonstrating stability under different conditions. The answer is simple;
we are concerned with the lack of stability. While stability is not synonymous with performance, the
stability guarantees provide a degree of confidence that the algorithm is not structurally flawed. The
practitioner may feel uneasy implementing an algorithm with no nominal stability guarantees or one
that requires a globally optimal solution to guarantee stability. Furthermore, in the process of deriving
sufficient conditions for asymptotic stability under the assumptions of optimality and suboptimality,
we identified some key issues in estimator stability. In particular, the estimator should track the data
sufficiently and not emphasize the prior information excessively. In order to tackle this problem, we
solve P3(T) and scale the approximate arrival cost Zr(-) with S7. We can restate the cost reduction
conditions in suboptimal strategies 1 and 2 as requiring our solution of P3(T") track the data sufficiently
and not allow the estimate to move away from the data.
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3.6 Receding Horizon Control and Duality

Given the strong duality between the linear quadratic regulator and the Kalman filter, a natural question
is whether MHE is the dual to receding horizon control (RHC). We begin by briefly reviewing RHC. See
Mayne, Rawlings, Rao and Scokaert (2000) for a more detailed review of constrained RHC.

Suppose the system is modeled by the nonlinear difference equation

Tk+1 = flg(xkauk)a (39)

where ff: R* x R™ — R" and f£(0,0) =0 for all ¥ > 0. Let z(k; 2,1, {u;}) denote the solution of the
difference equation (3.9) at time k subject to the initial condition z at time ! and input control sequence
{uj} . We assume the control and state sequences satisfy the constraints

ukEUk, .Z'kGXk,

for all £ > 0, where the sets Uy, C R™ and X}, C R” are closed and contain the origin.
Proceeding in an informal manner, we formulate RHC, given the measured state xr, as the
solution to the following optimal control problem

Py(zT) : Vi(zr) = y ?’}‘I-PN ) {(Ve({ur}, z7) : {ur} €UY (z7)}
where
T+N—-1
Vr({uk}, r) Z I(zr,ur) + Fron(zren),
k=T

with z := z(k; 27, T, {u;}) and UY (2) is the set of feasible control sequences satisfying the input and
state constraints subject to the initial condition 7 = z. We assume the stage costs I}, : X x Uy = Rxq
and the terminal penalty F : X; — R>o for all £ > 0. Let {ule(:ch)}kN;O1 denote the solution to
Py(x1). The feedback law is given by ur(-) = ung(-).

If we assume the system (3.9) is (constrained) stabilizable and the stage penalties I (-) and F(-)
satisfy certain technical conditions such as coercivity and boundedness, then a sufficient condition for
asymptotic stability is

Vi —Vp <0. (3.10)

One may satisfy the inequality (3.10) by choosing the terminal penalty F;(-) equal to the infinite horizon
cost to go:

F.(2) ={m}1n {Zlk Uk, Tk) {uk}EUfo(z)}.
Uk S o=~

With the exception of the unconstrained linear quadratic problem (i.e. LQR), we are unable to calculate
the cost to go. One alternative is to choose the terminal cost Frr(-) such that it satisfies the inequality

Fr(z) > Vi(2), (3.11a)
T+N-1
= I 1}1’%1_{1]\’ L { Z lk(uk,xk) + FT-',—N(:L'TJ,-N) : {Uk} S UTJY(Z)} . (3.11b)
k k=T

Recall condition C2 requires also that the approximate arrival cost Z () satisfy an inequality, a lower
bound rather than an upper bound. Furthermore, just as Zr(-) = ¢ is the trivial solution in MHE, the
choice Fr(x) = oo for z # 0, which we interpret as the constraint z7 = 0, is the trivial solution in RHC.
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One may interpret the duality as follows; RHC requires an upper bound to the backward dynamic
programming solution, whereas MHE requires a lower bound to the forward dynamic programming
solution. Furthermore, to guarantee stability, it is not necessary to satisfy the minimum. Rather, it
suffices to satisfy the inequality

T+N-1

Pr(z) > Y (koo Thjoo) + Fron(Trino0) (3.12)
k=T

where the sequence {Ug|oo; Tk|oo fowr € l2(R™ X R?) NUF (T1|oc)- Notice the similarity to the inequality
(3.7c). Likewise, the challenge is to construct the sequence {uj|oo; Zjoo } o7

One strategy to construct the sequence is to employ local analysis (c.f. (Parisini and Zoppoli
1995) and (Chen and Allgéwer 1998)). If we assume the function f£(-) is sufficiently smooth and locally
stabilizable about the origin and the sets X} and Uy, both contain a neighborhood of the origin uniformly
for all K > 0 (i.e. Je > 0 such that B! C X and B? C Uy, for all k > 0), then there exists a linear
feedback law Ky and positive invariant set X, typically the level set of the local Lyapunov function

‘C()7

z.(k;2,T) € X, k>T
(ool 2, )} r € La(RY)
Krx.(k;2,T) € U, E>T ([’
L(z) <a

Xoo(T) =

where z.(k; 2z,1) denotes the solution of the difference equation (3.9) at time % subject to the initial
condition z at time ! and the feedback law up = Kjzy. For all z € X (T'), one obtains the sequence
{¥k|oos Tkjoo f ey Dy construction. Typically, one chooses Fr(-) such that it satisfies the more stringent
inequality

Fr(z) > U(z,Kfz) + Fry1(fr(z,K¢z)) Yz € X (T).

This condition holds if Fr(-) is a control Lyapunov function in the neighborhood of the origin. If we
assume the control problem is time-invariant, then the inequality (3.12) reduces to

F(z) > U(z,Ks2z) + F(f°(2,Ksz)) Vz € Xoo.

A host of strategies exist for satisfying this inequality in a neighborhood of the origin (c.f. (Mayne
et al. 2000)). For example, as the state is converging to the origin in RHC, one can linearize about the
origin and use standard local analysis to construct a terminal penalty satisfying the inequality (3.12)
in a neighborhood of the origin. There is no fixed equilibrium state in estimation, so we are unable to
employ local analysis. Consequently it is necessary to construct the sequence {2y o0, Wg|oo} by solving
P5(T).

One obtains a stabilizing control law by receding horizon implementation of the following optimal
control problem

Py(z7) : Vi(@r) = min  {Vr({ur},z7) : {ur} € quy(xT)}

T —
{ur }k:’ll“v !

subject to the terminal constraint
#(T + N7, T, {u;}) € Xuo(T + N),
where, for all T > N,

Fr(2) > (2, K¢2) + Frya (f5(2, K§2)) V2 € Xoo(T).
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One might expect we can enforce the inequality (3.11) by scaling the terminal penalty Frin(-)
using a strategy similar to the one proposed in Section 3.4. However, to enforce the bound in RHC,
we need to scale the terminal penalty Fryn(-) at time T only after seeing the optimal trajectory at
time T + N. But, the optimal trajectory at time 7'+ N depends upon the scaling at time T', due to
the transition from z7 to 7. This interdependency precludes the possibility of applying the scaling
strategy to RHC. We do not have this interdependency problem in MHE, because we look backward.
Whereas in RHC, we look forward and anticipate the closed-loop response. However, by looking forward
and anticipating the closed-loop response, we are able to construct a stabilizing terminal penalty locally
in an invariant region centered about the origin.

We encounter difficulties also if we attempt to enforce (3.11) by solving directly for the terminal
penalty F(-) online. In addition to the computational difficulties associated with solving a functional
inequality online, a solution may not exist for some future time T' > N. If we initially choose the
initial terminal penalty Fiv(-) less than the steady-state cost to go, assuming it exists, then the terminal
penalty F;n(-) decreases necessarily by the monotonicity of dynamic programs as the index j increases.
At some future time T, we may be unable to satisfy the functional inequality as Frr(-) is less than the cost
associated with the sum Z{:g -t I (+). Consequently, we solve dynamic programs backward in control
rather than forward in order to avoid such problems. The terminal penalty F(-) depends on the choice
of the terminal penalty Fon(+), so it is preferable to calculate the terminal penalty Fon(-) first. Likewise,
with MHE, the approximate arrival cost 2, ~(+) depends on our choice of the approximate arrival cost
Zn(-) at time N, so it is preferable to work forward.

3.7 Conclusion

In this chapter we investigated MHE as an online optimization strategy for estimating the state of
constrained discrete-time systems. We provided conditions on the approximate arrival cost sufficient
to guarantee stability. We may interpret this condition as requiring that we do not add information
not specified by the data. For constrained linear models with quadratic objectives, the Kalman filter
covariance satisfies the conditions for the approximate arrival cost. This result holds regardless of whether
constraints are present. For constrained nonlinear state estimation, where an algebraic representation
of the approximate arrival cost satisfying the stability requirement is generally unavailable, we proposed
two alternative strategies. Both strategies circumvent the stability requirement by generating a stable
reference trajectory. Using the reference trajectory, both strategies are able to scale the approximate
arrival costs online to guarantee stability.

One of the goals of this research is to develop implementable strategies for constrained nonlinear
state estimation. To account for the practical difficulties associated with online optimization, we pro-
posed two stable suboptimal strategies. Neither of these strategies require global optimization. Instead,
a feasible cost decrease is sufficient for stability. Even though the properties of these strategies were
developed for nominal application, they demonstrate global optimization is not necessary for stability.
Rather, we may expect a stable estimator from local or suboptimal solutions.

The practical significance of MHE is the ability to incorporate constraints explicitly. This feature
distinguishes MHE from other strategies such as extended Kalman filtering and output error linearization.
Furthermore, if the estimation problem translates into a problem of form P;(T'), then we believe MHE
is a natural engineering approximation to the full information problem, because the structure of MHE is
not dictated by stability, but rather by performance and practicality. Stability results if one judiciously
approximates the past data.
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3.8 Appendix

3.8.1 Proof of Lemma 3.3.2

Proof. Recall z¢ denote the initial condition of the system (3.4). By the Lipschitz continuity of fi(-),
we have the inequality

T-1
||£L'(T;£U0,0) - i‘T|| S C;VHZL'(T - N;JL‘U,O) - i'T—N|T—1|| + Z C?_k ||7I)k|T—1||- (313)
k=T-N

Let §g/7—1 := hg(Zg7—1). If we utilize the inverse triangle inequality, we obtain the inequality

T-1 T-1
Z ok 11l = Z lly (k; 20, 0) — Gyl
k=T—N k=T—N
T-1 T-1
> > (ks 20,0) =Gkl — Y gk — Gz,
k=T—N k=T N

where g, := y(k— (T — N); &7_n|7-1,T — N). Rearranging the inequality and utilizing the observability
condition, we obtain the inequality

T-1 T-1 N-1
> Mowrall+ Do 18k —derall > Y lly(is20,0),0) — gl
k=T—N k=T—N =0

> o(|[|2(T — N;20,0) — 2r—nj7-1ll),

where ¢(+) be specified by the uniform observability assumption. Using (3.13) and the Lipschitz conti-
nuity of hy, we have

T-1 T-1 i
_ ~ i—k A
Z 9% = ki1l < Z Z ency " |[grall-
k=T—-N j=T—N k=T-N

Combining the inequalities and using Fact 3.2.2, we obtain

|2(T; z0,0) — &7|| <

T-1 T-1 4
ey <P_1< Z Ok 711 + Z Z Cthz_k ||U7k:r_1||> +

k=T—N (=T—N k=T—N
T-1
T—k, [,n
> ¢ Falldgroal,
k=T—N
T-1 T—1 ¢
< cﬁcv ot E dr+ E chcfc_kd* +
k=T—N (=T—N k=T-N
T-1 T-1

T-1
<k (77_1 ( > Lk@kﬁk))) ;
k=T—-N

where k(-) is a K-function. The existence of n~1(-) and k(-) follow from Facts 3.2.2 and 3.2.3. O
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3.8.2 Proof of Proposition 3.4.3

Proof. For T < N, existence is established by Proposition 3.3.1. Now consider T" > N and let
T—1
P = Z Li(Whjoos Vkjoo) + 27— N (Z7—N|oo)
k=T—N
denote the finite cost, by assumption A2 and property C1, associated with the feasible sequence z7_ y|oo
and {wk|(x,}f:_71L ~ specified in assumption A3 . Consider the set

A={efwdioh (o) €98, dr(e, {wed) < 8L

A solution exists under the stated assumption (see the proof of Proposition 3.3.1), if the set A is bounded.
Assumption A2 guarantees the sequence {wy,vy}i_s_n is bounded: [lwg|| + [lvg]| < 2771 (d%). We
conclude by demonstrating z is bounded. If we employ the inverse triangle inequality, we obtain

T—1 T-1 T—1
ST oloell =" Nk =3l > D N8k — Yrjooll = 19k — Yrjooll;
k=T—N T—-N k=T—-N

where g, 1= y(k; 2,T — N,{w;}) and yj|c = y(k; T7_N|0o, T — N,{w | }). Rearranging the inequality,
we obtain

T-1 T-1 T-1
S el + gk = roll = 3 Moell+ logeoll > 3 15k = vl
k=T—-N k=T—-N k=T—-N

If we employ again the inverse triangle inequality, we obtain

T-1
> Tk — Ykjooll >
k=T—-N
T-1
Z ”gk - y(k;foNk)oaT - N)” - ||y(k)fon\ooaT - N) - yk\oo” >
k=T-N
T-1
Z ”y(kazaT_N)_y(kafoNk)o;T_N)”_
k=T-N
T-1
k=T=N
Rearranging the inequality and applying the observability assumption, we obtain the inequality
T-1
S ykie — el + 16 — 9 (ks 2,7 = N1+ lykjoo — (ks 21— njo0, T = NI| >
T-N

e(ller-nioo — 2I1)-

The first quantity ||ykloO — 9kl| is bounded, using the triangle inequality, by ||vg|| + ||vjc | and, con-
sequently, by 2Nn1(¢!). To show the last two quantities are bounded, we employ assumption A0 to
obtain the following inequality

k-1
_ k—i
gk —y(k; 2, T =Nl < e D e llwll,
j=T—N
k-1 '
ch Z c?_’ZNn_l(gblT).
j=T—N

IA



69

Likewise, we have the inequality

k—1
k—i _
[9kioo = Y(K; 21—Njoos T = N)| S e Y, 507 (dh).
j=T-N
Consequently, the quantity ||z7_ x| — || is bounded, and existence follows as claimed. O

3.8.3 Proof of Lemma 3.4.6

Proof. The details of the proof can be found in the proof of Lemma 3.3.2. If we choose

and

then the lemma follows. The existence of the K-functions ¢!(-) and n~1(-) follow from Fact 3.2.2, and
existence of the K-function 6y (-) and 65(-) follows from Fact 3.2.3. O

3.8.4 Proof of Lemma 3.4.10

Proof. The existence of wy is guaranteed by A4. By assumption A2, we have the inequality
Lip(w,99) < v(||wk|| + [|69]]). By the definition of the model (3.1), we have the inequality

llz(k + 1520,0) = &R [l + | fi(z(k;20,0),0) — (@R, 0)[ > [If (@R, @x) — £(&R,0)l.
By assumptions A0 and A4, we have the inequality
k& (lz(k + 1;20,0) — &34 [ + csll(@(k; 20, 0)) — 23 1) > [lwwll.
By assumption A0, we have the inequality
Rl = llhe(z(k; 20,0)) — hr (@R < cnlle(k; 20,0) — 23]
Let ey, := z(k; 0,0) — 29. Combining the above inequalities, we obtain
Ly(wr,0%) < v (k(llexsall +crllexll) + enllexl])
Using Lemma, 3.4.6, we obtain the inequality
Ly (@, 0) < v (k(01(Why1) + cr01(¥5)) + cnbi(vy)) -

If we set p(-) := v (k(01(-) + c£61(-)) + cnb1(-)) , then, by Fact 3.2.3, the lemma follows as claimed. [
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Chapter 4

Constrained Linear State

Estimation!

4.1 Introduction

The Kalman filter is the standard choice for estimating the state of a linear system when the mea-
surements are noisy and the process disturbances are unmeasured. One reason for the popularity of
the Kalman filter is that it possesses many important theoretical properties such as stability. Often
additional insight about the process is available in the form of inequality constraints. With the addition
of inequality constraints, however, general recursive solutions such as Kalman filtering are unavailable.
One strategy for determining an optimal state estimate is to reformulate the estimation problem as a
quadratic program. This formulation allows for the natural addition of inequality constraints. While
there exist many strategies to solve efficiently quadratic programs with the particular structure of the
linear estimation problem (c.f. (Biegler 1998)), the problem grows without bound as we collect more
measurements.

Building on the success of model predictive control, moving horizon estimation (MHE) has
been suggested as a practical method to incorporate inequality constraints in estimation (c.f. (Muske,
Rawlings and Lee 1993), (Muske and Rawlings 1995), (Robertson, Lee and Rawlings 1996), (Tyler 1997),
and (Rao and Rawlings 19984)). The basic strategy of MHE is to reformulate the estimation problem as
a quadratic program using a moving, fixed-size estimation window. The fixed-size estimation window is
necessary to bound the size of the quadratic program. Because only a subset of the data is considered,
stability questions arise. In this chapter we discuss moving horizon approximations for constrained
linear state estimation. The results, derived independently, are a special case of the results presented in
Chapter 3.

4.2 Problem Statement

Let the system generating the data sequence {yi} be modeled by the following linear, time-invariant,
discrete-time system

Trr1 = Az + Guy, (4.1a)
yr = Cuzp + o, (4.1b)

where it is known that the states and disturbances satisfy the following constraints

zr € X, w, € W, v € V.

!This chapter was published in an abridged form as Rao, Rawlings and Lee (1999)
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We assume z € R™, y, € RP, and wy € R™ and the sets X, W, and V are polyhedral and convex (i.e.
X={z : Dz <d}) with 0 € W and 0 € V. Let z(k; 2, {w;}) denote the solution of model (4.1) at time
k subject to the initial condition z and disturbance sequence {w; }f;&:

k-1
z(k; z, {w;}) = Az + Z AR=IT G,

3=0
We formulate the constrained linear state estimation problem as the solution to the following
quadratic problem

¢ = min o7z, {wk}) (4.2)

Eo,{wk}gﬂ;

subject to constraints
T € X, wy € W, v €V, (4.3)

where the objective function is defined by

T—1
¢r(wo, {wr}) = D vpR™ v + wiQ ™ wi + (w0 — &0)'Tly (w0 — o),
k=0
zp = x(k;20,{w;}), and vy = y, — Cx(k;zo,{w;}). We assume the matrices (), R, and II, are

symmetric positive definite. The pair (&g, Ily) summarizes the prior information at time 7' = 0 and is
part of the data of the state estimation problem. We refer to this problem as the full information
estimator, because we consider all of the available measurements. The solution to (4.2) at time 7' is the
unique pair (£o7_1, {uﬁHT,l}f;Ol), and the optimal pair yields the state estimate {§:k|T,1}kT;01, where

Ep)7—1 = (K, Toj7—1, {Wr})-

To simplify notation, let ; := Z;;_1, where Zo_; := Zo.

4.3 Moving Horizon Approximation

Efficient strategies exist for solving the quadratic program (4.2). However, the problem size grows with
time as the estimator processes more data. As a result, the problem complexity scales at least linearly
with 7. To make the estimation problem tractable, we need to bound the problem size. One strategy
to reduce the problem (4.2) to a fixed dimension quadratic program is to employ a moving horizon
approximation. The basic strategy of the moving horizon approximation is to consider explicitly a fixed
amount of data, while approximately summarizing the old data not explicitly accounted for by the
estimator. The key to preserving stability and performance is how one approximately summarizes the
old data.

Consider again the full information problem (4.2). We can rearrange the objective function ¢ ()
by breaking the time interval into two pieces: t; ={k:0<k<T—-N—-1}andte ={k:T-N<k<
T-1}.

T—1
o1 (w0, {wr}r—y) = ér-n~ (w0, {we}) + Z v R g + w, Q@ wy.
k=T-N
By the Markov property of the system (4.1), the quantity

1
E v R g + wp, Q@ twy
k=T—N
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depends implicitly through the model (4.1) only on the state x7_n and the decision variables wy in
the second time interval t5. Exploiting this relation using forward dynamic programming, we can es-
tablish the equivalence between a full information problem and an estimation problem with a fixed size
estimation window.

Consider the reachable set of states at time 7' generated by a feasible initial condition xo and
disturbance sequence {wy}{

zg € X,
Rr = z(T;x0,{w;}) :  x(k;z0,{w;}) € Xfork=0,...,T,
w, EWilork=0,...,(T —-1)

For z € Rr, we define the arrival cost? as

O0r(z):= min ) {¢7 (20, {w;}) : &(T; 0, {wr}) = 2},

zo, {wr } 10

where the minimization is subject to the constraints (4.3). It follows that 8y (2) = (z — #0)'TIy ' (2 — &)

Arrival cost is a fundamental concept in MHE, because the following equivalence can be established
simply using forward dynamic programming:

min  ér (20, {we}) =

zo, {wr } 10
T—1

. —1 1
min E v R g + wi,Q  wy, + 07N (2),
2 {wntpZr_ N k=T—N

where the minimizations are subject to the constraints (4.3), zy = z(k — T — N;z,{w;}), and v}, :=
yr — Cz(k —T — N; z,{w;}).

The arrival cost compactly summarizes the effect of the data {yk}kT;(fV ~1 on the state z7_n,
thereby allowing us to fix the dimension of the optimization. We can view arrival cost as the analogue
to the cost to go in standard backward dynamic programming. Loosely speaking in probabilistic
terms, the arrival cost generates the conditional density function p(zr_n|yo,--. ,yr—~N—1) and vice-
versa: the arrival cost is proportional to the negative logarithm of the conditional density function
p(x7_N|Yo,--- ,yr7_~N_1) 3. Hence, we may view arrival cost as an equivalent statistic (Striebel 1965)
for the conditional density function p(zr-N|yo,--- »YT—N—-1)-

If we are able to construct analytic expressions for the arrival cost, then it is possible to develop
recursive estimators. One example is Kalman filtering. Consider the unconstrained estimation problem
(4.2). If we use the Kalman filter covariance update formula (Jazwinski 1970)

IIr = GQGI + AHT_lAI - AHT_lC”(R + CHT_ch)_ICHT_lA’, (44)

subject to the initial condition IIy, then, assuming the matrix Il is invertible, we can express the arrival
cost explicitly as

O01(z) = (z — &) N7 (z — &1) + 67,

where 7 denotes the optimal estimate at time T given the measurements {yk}z:_ol and ¢} denotes the

20ther researchers have used the term cost to come (c.f (Basar and Bernhard 1995)) or cost to arrive (c.f. (Verdu
and Poor 1987)).
3For example, if the conditional density function is normally distributed (i.e. p(zr_n|Y0,---,y7_N_1) ~

N(&7—n,I7_n)), then —log (p(x7—N|Yo0, --- ,y7—N—1)) X (Tr—N — Er—N)' 1"y (Tr_N — 17— N).
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optimal cost at time 7. From the preceding arguments, we have

min__gr(zo, {wi}) =

Zo, {wk}kT=o
-1
min Z v R o + w,Qwy, + (2 — 2r-n)' T N (2 — B7-N) + PN

T—1
z {wp b or_ N k=T—-N

We can extract the Kalman filter by considering a horizon of N = 1. For this scenario, we have
br(z,wr—1) = vp_ R tor_q + wh_1Q rwr_y + (2 — &7_1)'TI7E (2 — S7-1)-

Substituting in the model equation (4.1), evaluating the minimum with respect to wr_1 and z7_1, and
using some algebra, we obtain the well known result

dr = Adr_1 + Ally_1C"(R+ Cllp_C") " (yr — CA%r_1)

for the Kalman filter.

Unfortunately, for the constrained problem, we are unable to generate an analytic expression for
the arrival cost. Inequality constraints make the problem combinatorial, so general analytic expressions
for the arrival cost are unavailable. One reasonable solution then is to approximate the arrival cost for
the constrained problem with the arrival cost for the unconstrained problem. This choice has the de-
sirable property that when the inequality constraints are inactive, the approximation is exact. Because
we consider an approximation of the arrival cost, stability questions arise: does a poor choice of an
approximate arrival cost lead to instability? As demonstrated in Section 4.6.1, the answer is yes. Insta-
bility may result for some systems if the arrival cost is improperly approximated. In the next section,
we discuss the details of the stability arguments. As we demonstrate, it is not necessary to generate
explicitly an analytic expression for the arrival cost. Rather, as discussed in Rao and Rawlings (1998a),
the approximate arrival cost needs only to satisfy an inequality.

We formulate MHE as the solution to the following quadratic program

=  min  ¢r(z, {we}), (4.5)

T—1
z {wn b Zr_n

subject to the constraints (4.3) where the objective function is defined by

¢T(z7 {wk}) =
T-1
Y R o+ wiQ twy + (2 — 878 T (2 — #0N) + S,
k=T-N

zy, .= x(k — (T — N); 2, {w;}) and vy, := y — Cx(k — (T — N); z,{w;}). The MHE cost 3 approximates
the full information cost ¢% by replacing the arrival cost 7_n(z) with the quadratic approximation
(z — &5n N)'TIE N (2 — 25" n) + ¢%_n. The pair (#5" v, I7_n) summarizes the prior information at
time T'— N. The vector £3" 5 is the moving horizon state estimate at time 7' — N and the matrix
Il _ N is the solution to (4.4) subject to the initial condition Ily. For T' < N, MHE is equivalent to the
full information estimator: ¢z (-) = ¢z (-). We assume at this point that the matrix II;_ is invertible;
conditions for nonsingularity are discussed later. The solution to (4.2) at time 7T is the unique pair

(z*, {u?,r;‘ll}fl}zz_%_ ~), and the optimal pair yields the state estimate {'i.ll::TATfl}Z:_Tl’— N> Where

iy = ok — (T = N); 2*, {5"}).

To simplify notation, let 27" := 5:‘]?]1;._1, where ;%gl“_l := Zo. This formulation of MHE was first proposed
by Muske et al. (1993) and Robertson et al. (1996).
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4.4 Stability Analysis

When the inequality constraints (4.3) are not present, the solution to the quadratic program (4.2) may
be obtained analytically, yielding the Kalman filter. The relationship between least squares and the
Kalman filter is well known (c.f. (Bryson and Frazier 1963) and (Rauch, Tung and Striebel 1965)). Even
with the addition of constraints, the estimator enjoys analogous stability properties. In particular, the
constrained estimator is stable in the sense of an observer. The following discussion of observer stability
is premised on classical Lyapunov stability theory for dynamical systems. The concepts are completely
analogous to their classical counterpart. To account for constraints, we have modified the definition of
stability in an analogous manner to Keerthi and Gilbert (1988).

Definition 4.4.1 The estimator is o asymptotically stable observer for the system
Tpy1 = Axp, yr = Czy. (4.6)

if for any € > 0 there corresponds a number § > 0 and a positive integer T such that if ||zo — Zo|| < &
and T € X, then |27 — ATxo|| < € for all T > T and 27 — ATxg as T — oc.

The implications of constraints on the estimator are more subtle than for the regulator. In
particular, the estimator has no control over the evolution of the state of the system. A poor choice
of constraints may prevent convergence to the true state of the system (4.6). For further discussion
of constraints, see Chapters 2 and 3. One solution is to require that the evolution of the system (4.6)
respects the constraint X (i.e. A¥zy € X for k£ > 0). While this assumption is reasonable, the constraints
need to satisfy only the following weaker assumption to prove stability .

I Suppose the system (4.6) with initial condition zo generates the data (i.e. y, = CAFzg). We assume
there exists Tg|oo, {Wk|oo fregs and o > 0 such that

oo
D Vhioo R koo + Whioo@ M Wiioo + (Tojoo — £0) Ty (Tojos — o) < o — ol
k=0

and
mk\oo € X, wk|oo € W, Uk|oo € V,
where oo = T(E; Tojoo, {Wj|oo }) AN Vpjoo = Yg — C2(k; Toj00, {Wj|oo })-

It is straightforward to demonstrate assumption I is a weaker assumption: if we choose o = Amax(Ilg b,
then assumption I follows if we assume the evolution (4.6) respects the constraints X. Recall, by
assumption, 0 € Wand 0 € V.

Assumption I states that if we consider an infinite amount of data generated by the system (4.6),
then there exists a feasible state and disturbance trajectory that yields bounded cost. Assumption I is
also a sufficient condition for the existence of a solution to the quadratic programs (4.2) and (4.5). The
upper bound ¢ is necessary to prove stability. Without this bound, we have no reference for constructing
a Lyapunov function. Unlike regulation where we have a strictly monotone nonincreasing cost function
that is bounded below by zero, we have a strictly monotone nondecreasing cost function in estimation
that is not necessarily bounded above (e.g. consider the case when assumption I is violated). The role
of o is to provide this upper bound when constraints prevent the estimator from tracking the system
perfectly. Otherwise, without constraints, we can readily generate the upper bound with o = Apax(TTy 1)
(i.e. the cost of tracking the system perfectly).

In order to demonstrate stability, we require the following lemma.
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Lemma 4.4.2 Suppose (C, A) is observable and N > n. If

1

Al —1 A A —1 ~
E : Opyr—1 B g1 + Wp_1 Q@™ W71 = 0,
k=T—N

then || — || — 0.
Proof. The proof is available in the Appendix 4.8.1. O

Before discussing the stability of the MHE, we first state the following stability result for the
full information estimator. A preliminary version of the proposition was proved by Muske et al. (1993),
where convergence was established. For consistency with the MHE results, we prove the convergence
and stability in the following proposition under slightly different assumptions and arguments than those
used by (Muske et al. 1993).

Proposition 4.4.3 Suppose the matrices Q, R, and Iy are positive definite, (C, A) is observable, and
assumption I holds. Then, the constrained full information estimator is an asymptotically stable observer
for the system (4.6).

Proof. We assume throughout the proof T > n (let T = n). We first demonstrate convergence. We
know an optimal solution exists to (4.2), because the problem is a convex quadratic program and the
feasible region is not empty: 2go, and {wk|oo}Z:_01 (Frank and Wolfe 1956). Hence, by optimality, we
have that o||zg — Zo[|?> > ¢} for all k. Writing out the cost function explicitly, we regroup the optimal
cost as follows

T-1
* _ Al —1A N —1 A~ A A ! —1/74a A
¢y = E Oy BT Opyr—1 + Wiyp_1 Q@ Wgyr—1 + (Zojr—1 — #0)'Ty ~ (Zoj7-1 — %o),
k=0
_ o 1z Iy -1~
= UT_1|T_1R Ur—1|T-1 +'1UT_1|T_1Q Wr—1|T-1 +
T—2
o 1 Iy 1s - & NTT=1/ 4 -
E Opp—1 B Opyr—1 + wk|T_1Q Wy -1 + (oj7—1 — %0)'Ily " (Zoj7—1 — %0),
k=0
where Oyr_1 := yr — CZp7_1- Since Zo7_, and {wk‘T_l}{;g are feasible at time index T — 1, we

obtain the inequality

T—2

. —14 N -1~ N N —1/4 N
E ’U;g|T71R Ug|T-1 + wL|T71Q Wy -1 + (Foj7—1 — i)' Tl (Toj7—1 — %0) > 14
k=0

by optimality. This inequality implies

* * a1 —1x ~1 —1 4
¢r — 11 2 Uy BT 0r_1jp—1 + Wp_qp_ @ Wr—1j7—1 2 0.

Since ¢% is nondecreasing and bounded above by o||zg—]|?, the sequence of optimal costs ¢4 converges
to ¢%, < ol|zo — #0||? < 0o. Convergence implies for some fixed N > n,

T-1

* * Al —1 ~1 —1,~
b — o1 N 2> E Opjp_1Q™ Okjr—1 + Wyyp_1 Q7 Wgjr—1 — 0
h=T—N

as T — oo. By Lemma 4.4.2, it follows that the estimation error ||#7 — AT x| — 0 as T — oo.
To prove stability, let € > 0 and choose p > 0 sufficiently small for T = n as specified by
Lemma 4.4.2. If we choose § > 0 such that 062 < p, then we obtain the following inequality for all
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ﬂ

-1

2 N —1xs a1 -1~ - A NITT—1/4 .
gd” > Uk|T71R V| T-1 +wk|T,1Q WgT-1 + (1170|T71 — &) II, (55'0|T—1 — &),

0

~
Il

! —1 Al —1 ~
> E ’Ule_lR Vk|T-1 +wk|T_1Q Wg|T-1-
k=T—n

Hence, if the initial estimation error ||zo — Zo|| < 6, then the estimation error ||#7 — AT x| < € for all
T > T =n as claimed. d

To establish asymptotic stability for MHE, we require the following lemma.

Lemma 4.4.4 The Kalman filter covariance matriz T satisfies the following inequality for all p € R

(=) (=57 + 67 < min, {61z {wi}) + a(N;2,{w;}) = p},
2 \Wk S p=T—N
= éT(p)7

where the minimization is subject to the constraints (4.3).
Proof. The proof is available in Appendix 4.8.2. O

Before we establish stability, we need to characterize conditions that guarantee the matrix Ilp
is positive definite (invertible). If we assume that (C,A) is detectable and (4, GQ~'/?) is controllable,
then

lim I =11
i T b

where T, > 0 is the unique steady-state solution to the Riccati equation (4.4) (de Souza, Gevers and
Goodwin 1986). If we choose Iy > TI,, then I is positive definite for all k¥ > 0 (Bitmead, Gevers,
Petersen and Kaye 1985). As an alternative, if the matrix G is nonsingular (in which case GQGT is
positive definite), then Iy is also positive definite for all & > 0.

Proposition 4.4.5 Suppose the matrices Q, R, and Iy are positive definite, (C, A) is observable, as-
sumption I holds, N > n, and either

. The matrix G is nonsingular, or
. (A,GQ'/?) is controllable and Ty > .
Then the constrained moving horizon estimator is an asymptotically stable observer for the system (4.6).

Proof. ~ We begin by demonstrating convergence. An optimal solution to (4.5) exists (Frank and
Wolfe 1956), because the problem (4.5) is a convex quadratic program and the feasible region is not
empty: the pair £7_ N and {wk‘oo}kT:_%_ ~ is feasible. By definition,

T—1

T 7% Amh' —1,mh ~mh’ —1,~mh

¢ —dr_N > E , Vpir—1 B 04 +wk\T71Q W iT-1>
k=T-N

Amh — Amh A 2 . . .
where 03 == yr — C2p%_,. To demonstrate o|zo — Zo||* is a uniform bound, we proceed using an
induction argument. For T' < N, we have by optimality

P < O07(Tr)00) < 0z — BF0|%
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For T'> N, Lemma 4.4.4 guarantees
0(27)00) = 0(@7100) > (@T)00 — 27) TT (@700 — E7) + Py
Let us now assume, for T'> N,
O(r7_N|o) > (TT-Njoo — i"TfN)IHflfN(fUT—Moo —Er_N) + Py _n-

for the induction argument. Utilizing the optimality principle, the induction assumption, and properties
of the arrival cost, for all T'> N,

T-1
allzo = ol> > min > R+ wpQ  wy + 07N (2) 2Nz, {w;}) = Triee ¢ 5
z, {we k=T— N k=T—N

(by optimality and assumption I )

Y

T-1
min { 2 vp R v + wl, @ twg+
k

T-1
z {we}r_n =T—N

(z = 87" §) Tty (2 = 7 N) + S = 2(Ns2, {w;}) = wT|oo} ;

(by the induction assumption)

Z (mT|oo - 'ﬁ?’h)ln’;l(meo - 'ﬁ?h) + d}".;’
(by Lemma 4.4.4)

> o,

where both minimizations are subject to the constraints (4.3). Hence, the sequence {(73*T} is a monotone

nondecreasing and bounded above by ol|zg — 25" ||?. Convergence implies

1

>

mn’ —14m ~mn/ —1 am

Vg RO p_ g + Ofp_1 Q7 g =0
k=T-N
as T — oo. Lemma 4.4.2 guarantees the estimation error ||25" — ATzo|| = 0 as T — oo.

To prove stability, let € > 0 and choose ¢ > 0 sufficiently small for T' = N as specified by
Lemma 4.4.2. If we choose § > 0 such that 06> < p, then we obtain the following inequality for all
T>N.

T—1
Amh’ —1am Amh’ —1,~Am
Z b1 B O poy +0gr_1 Q7 Wy
k=T—N
~m am —1 (am m :
+(@F nyr1 — TPN) T p (7 Nyt — T2 N) + 07N
T—1
! —1pm o mp/ —1am
Z Opr—1 B 0oy + 01 Q7 Wijr_y,
k=T—N

62

vV

vV

Hence, if the initial estimation error ||z — 2§"|| < d, then the estimation error ||Z53" — AT 24| < € for all
T >T =N as claimed. a

Remark 4.4.6 When inequality constraints are not included, MHE is equivalent to the Kalman filter.
Proposition 4.4.5, therefore, establishes that the Kalman filter is stable under the stated conditions.
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Pass estimate between adjacent

data windows
y
AN ’ SN
2N VAN
\/ " \ /\
' V
f f f
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Figure 4.1: A diagram of the filter update strategy for passing information forward in time.

We may also formulate the constrained steady-state MHE where the objective function is now
defined as

T—-N

OF (2, {w}) = D R Mg +wiQ twk + (2 — r )T (2 — d1N) + $5_n-
k=T-1

For T < N, we choose qAS%’() = ¢r(-) with Iy = II,. Demonstrating the stability of steady-state MHE
is immediate. In Proposition 4.4.5, we proved stability for all II > 0. If we choose Iy = II,, then
I =1, for all T. We state this result as the following corollary to Proposition 4.4.5.

Corollary 4.4.7 Suppose the matrices Q and R are positive definite, (C, A) is observable, (A,GQ1/?)
is controllable, assumption I holds, and N > n. Then the constrained state-state moving horizon esti-
mator is an asymptotically stable observer for the system

4.5 Smoothing Update

In our development of the MHE, we use a filter update to summarize the past information. With the
filter update we transfer the prior information to current estimate window by conditioning the estimates
at time T using Z7_ . The conditioning is the result of the approximate arrival cost

(x2r—n — &7-~N)'TI  y(@7-N — B7-N)

achieving its minimum at Z7_n. A schematic of the filter update strategy is shown in Figure 4.1. We
can interpret the filter update strategy as follows. If we consider the conditional probability density of
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the state sequence {zx}7_, given the data sequence {yk}z:ol, we have

p(xT—Na -5 TT, Y0,y - - - ayT—l)
p(yOJ"' anyl)

(p(bla) = p(a,b)/p(a))

P(TT-N, -, 2ZT|Y05 -+ ,YT—1)

= p(@T-N41,---TT,YT—N,--- YT—-1|TT-N, Y0, - - - ,YT-N—1) X
p(xT_le(), L yT_N_l)p(yO, e yT—N—l) ,
p(yOJ e 5yT71)
(p(a, b, c,d) = p(abled)p(c|d)p(d))
= p(&T_N4+1,---ZT,YT—N,--- ,YT—1|TT-N) X
p(xT_le(), L yT_N_l)p(yO, e yT—N—l) ,
p(yOJ e 5yT71)
(the Markov property)
= pYT—N,--- Y7T-1|TT-N, ... ,TT_1) X

p(.CCT_N_;,_l, . :IIT|.’L'T_N) X
(Yo, .. yT-N-1)
p(¥o,--- ,yr-1)
(p(a,blc) = p(alb, c)p(b|c) and the Markov property)

p(-'ETleyO; <. nyNfl)

Because the probability densities p(yo,-..yr—~—_1) and p(yo, ... ,yr_1) are independent of the choice of
the state sequence {zj}7_r_, We obtain

p(mTiN"" ;$T|y0,-.. ’nyl) X p(nyN;"' JnyllmTfN,... ,.’L'Tfl) X
P(TT_N415-.-ZTT|TT_N) X
p(xT-Nlyo,---yT—N_-1),

(the Markov property and the model structure)
T—1
x H Pk |zK)p(Trt1|zr) X
k=T—-N
p(xT-Nlyo,---yT-N)-

We may view the term HkT:_%_ N PWrk|xk)p(@pt1|2k) as the moving horizon contribution to the state
estimate and the term p(xr_n|yo,...yr-N_1) as the contribution of the initial penalty, or arrival cost,
to the estimate. The initial penalty approximates an equivalent statistic by summarizing the past
information not included in the current estimation window.

Rather than condition the estimate at time 7" on Z7_ v, we may also condition the estimate on
Tr_nT—2. With the filter update, we ignore the influence of the data {yk};:?\, on our knowledge of
z7_N. A diagram of the smoothing update strategy is shown in Figure 4.2. This problem was first
studied by Findeisen (1997).

In analogous manner to the filter update, we have a probabilistic interpretation for MHE with
a smoothing update. We begin our derivation by first considering the information transition from time



Pass estimate between overlapping
data windows

Figure 4.2: A diagram of the smoothing strategy for passing information forward in time.

T — 1 to T. Utilizing the properties of conditional densities, we obtain

P(ET—N,--- TT|Y0,--- »yT—1) = PET,Y7-1|TT-N, -+ s TT-1,Y0,--- ,YT—2) X
p(ET-N, - TT-1|Y0,--- ,YT—2) X
(Yo, --- ,yr—2)

P(Yos--- s yT—1)’

(p(a,ble,d) = p(bd|ac)(alc)p(c)/p(d))

= pler,yr-1l2T-N,-- . ;TT-1) X
p(Tr N, .. ;$T71|y0;--- Yr—2) X
Yo, --- YT 2)

o, ,yT-1)’

(the Markov property)

= p(nyl|1'Tfl)p($T|$Tfl) X
p(Tr-N, - TT-1|Y0,--- ,YT—2) X
p(Yo, - -- ,yr—2)

p(y05 L] anyl) '
(the Markov property)

From our solution at time 7" — 1, we possess information concerning

P(foN,--- 7$T71|y07--- ,ny2)-

However, we prefer to retain the explicit use of the data window in the estimation procedure.

particular, we reformulate the conditional density as follows

P(TT_N, - ZT-1|Y0s- -+ ¥T—2) = DPET-N41,---,2TT1|ZT-N,Y0,--- ,YT—2) X

p(xT—NkUO: .- :Z/T—z)-

81

In
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We obtain the following expression

P(ET-N41,y - s ET-1|TT—-N,YT—N,- -+ ,YT—2)
p(mT—N+1, <o s TT—1,YT—N, - - -Z/T—2|SUT—N)
a p(yT-N,--- ,yr|TT-N) ’
(p(a, blc) = p(albe)p(blc))
Y TN P ’wT_l)P(ﬂTT—NH,--- ,TT_1|ZT_N)
pyr-n;- - yrler—n)

(the Markov property)

Hence, we obtain

T-1
p@r-n- s 2rlyo, - yr—1) o< [ plyrler)p(@rialzr)
k=T—-N
p(H?Tleyo, YT 2)
P(yT—N, cee ,yT—2|-'L'T—N)

We may view the first term as the moving horizon contribution to the estimate and the second term
as the contribution of the initial penalty to the estimate. Here, the initial penalty is the smoothed
equivalent statistic.

Before discussing the arrival cost using the smoothing update strategy, we first derive an expres-
sion for

p(xT-N|Yo,-- - ,YT—2)
PYT-N,--- s YT—2|TT_N)

For linear unconstrained systems we can calculate the smoothed equivalent statistic as follows. The
numerator is the smoothed covariance of the state estimate. Rauch et al. (1965) demonstrate

p(arlyo - - -yr) {:= playr)} ~ N(Eg7, My 1),

where the smoothed covariance is obtained from the following backward Riccati equation

Oy = gpp + Hk\kA;gH/;l_”T(HkJ,-I\T - Hk-i—l\k)H/;l_l‘TAka\k: (4.7)
where
I, = I — IC' (R + CILC') ' CIL,
and II,_; := IIx. To evaluate the denominator, which prevents the estimator from using the data

{yx}1_2 , twice (i.e. accounting for overlap between the estimation windows), we have the following
expression

pYT-N,-- . yT—2|zT7-N) ~ N (ONn_227_N,WnN_2),

where the expressions for On_2 and Wy _o are given in Appendix 4.8.3. The derivation follows from
the elementary properties of linear Gaussian difference equations.
We formulate MHE with the smoothing update by using the objective function

T-1

dr(z,{we}) = Y wpQ 'wi + v R oy + Tron(2) + $5
k=T—-N
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where

Fr n(z) =(2— :i'T—N|T—2)IH';“1_N|T—2(z — Zr_NjT—2) —
(VN2 = On22) WL, (VY72 = Onosz) + ($5-1 — $5-),

and

N '
yT 2.= [ y’T_N, ZIIT_N_la B ylf—2 ] .

Expressions for On_2 and Wi _2 are given in Appendix 4.8.3.
To prove stability, it suffices in light of Proposition 4.4.5 to demonstrate that T'r(-) satisfies the
inequality in Lemma 4.4.4.

Lemma 4.5.1 Suppose the matriz I1;7_, is positive definite. Then, we have for j <T
(z = &) Wy (2 = &jjr—1) + 97 = {mir}lT_l {¢r (w0, {wi}) : z(j;z0, {wi} = 2}. (4.8)
zo,{we}x g

Proof. This equality follows from the smoothing results for linear discrete-time system (c.f. (Rauch
et al. 1965) and (Bryson and Ho 1975)). O

Lemma 4.5.2 Suppose the matriz Ilr_niT_o is positive definite. Then, for allp € Rt and j <T

Lrp)+dr < min {dr( {we)) : sz fwnd) =},

z’{wk}g;ql“—N
= Or(p).
where the minimization is subject to the constraints (4.3).

Proof. The proof is available in the Appendix 4.8.4. O

Corollary 4.5.3 Suppose the matrices ), R, o, and lly_np_o for all T > N are positive definite,
(C, A) is observable, assumption I holds, N > n. Then the constrained moving horizon estimator with a
smoothing update is an asymptotically stable observer for the system (4.6).

4.6 Example of inequality constraints yielding improved esti-
mates.

Consider the following discrete-time system?

0.9962 0.1949 ] [ 0.03393
Tk4+1 = k

~0.1949 0.3815 0.1949 ]“”“ pe=[1 =3 ]+ue (4.9)

We assume {vj} is sequence of independent, zero mean, normally distributed random variables with
covariance 0.01, and wy, = |z| where {21} is a sequence of independent, zero mean, normally distributed
random variables with unit covariance. We also assume the initial state z¢ is normally distributed with
zero mean and covariance equal to the identity.

We formulate the constrained estimation problem with @ = 1, R = 0.01, Il = 1, and %y = 0.
For the MHE, we choose N = 10. To capture our knowledge of the random sequence wyg, we add the

—3s+1

4This state space system is a realization of the following system G(s) = 71341

sampled with a zero-order hold and
sampling time of 0.3.
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inequality constraint wy > 0. Note, this formulation yields the optimal Bayesian estimate. A comparison
of the Kalman filter, full information estimator, and MHE with a filter update for a single realization
of (4.9) is shown in Figure 4.3. As expected, the performance of the constrained estimators is superior
to the Kalman filter, because the constrained estimators possess, with the addition of the inequality
constraints, the proper statistics of the disturbance sequence wy. Hence, the constrained estimation
problem formulated above accurately models the random variable wy,.

If we consider the statistics of the random variable wy, it is important to note that the mean is
not zero and the covariance is not 1. Rather, the mean is 2//27 and the covariance is (1 —2/7). When
we consider the negative inverse logarithm of the probability density function, however, we have

1
— 108 puy,, (W) §w§cwk for wy, > 0.
Note, therefore, that constraints allow for non-Gaussian disturbances.

4.6.1 Example of instability due to a poor choice of the initial penalty.

Consider the problem of estimating a unit step disturbance to the system (4.9) with initial condition
zo = 0 when there is no process or measurement noise (i.e. a deterministic estimation problem). We
model the disturbance as an integrator with the following process model:

0.0962 0.1949 0.03393 0
Tpp1 = | —0.1949 0.3815 0.1949 |z + | 0 |wy, wr=[1 =3 0]+ (4.10)
0 0 1 1

The state z3) represents our estimate of the disturbance. We formulate the unconstrained MHE with
Q=1 R=1, N =10, and £ = 0. For this example, we consider only steady-state MHE. We choose
the initial penalty

1

a(z — &j5-1) T (2 = &55-1)-

Figure 4.4 shows the response of the MHE for different values of a. When a = 1, MHE is equivalent to
the steady-state Kalman filter, because no constraints are present. If we choose a sufficiently small, the
estimator diverges, because the past data is weighted too strongly and the estimator is unable to “keep
up” with the data. The stability limit for « in this example is approximately 0.23. For many system (i.e.
asymptotically stable), the estimator is stable even when a — 0. For this example, the non-minimum
phase behavior and the addition of an integrator were necessary to induce instability.

4.6.2 Examples of instability due to infeasible inequality constraints.

It is simple to demonstrate that an empty feasible region causes estimator divergence. For example,
consider the system with A = 1, C = 1, and the initial condition g = 0. If we choose the constraints
such that |z| > 1, then it is impossible to converge to the true state of the system without violating
the constraints. For unstable systems, one might expect poorly chosen constraints on wy result also
in instability: if we choose the constraints on wy, too rigidly, then the unstable modes of the system
dominate Gwy,. If there are no constraints on state and 0 € W, then this scenario does not occur. The
reason is that we are always free to choose ¢ equal to the true state of the system. This choice provides
an upper bound to the optimal cost for the estimator. Therefore, the estimator can perform no worse
assuming the problem is well-posed (i.e. observability, etc.).

It is well known that state constraints may destabilize receding horizon controllers when the
system is non-minimum phase, even when the constraints appear well-posed (c.f. (Zafiriou and Marchal
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Figure 4.3: Comparison of estimators for Example 1
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Figure 4.4: Example 2: comparison of steady-state MHE with different scalings of 1.

1991)). The instability results from the controller inverting an unstable zero. Note this problem does
not arise when the system is minimum phase. Rawlings and Muske (1993) demonstrated this form of
instability results when the corresponding infinite horizon problem is infeasible. To alleviate these diffi-
culties many researchers have proposed different strategies to soften the state constraints (c.f. (Ricker,
Subrahmanian and Sim 1988, Genceli and Nikolaou 1993, de Oliveira and Biegler 1994, Zheng and
Morari 1995, Scokaert and Rawlings 1996)). These strategies are also applicable to MHE mutatis mu-
tandis.

One may reasonably expect similar forms of instability arise in MHE (one example is described
below). We have already shown how instability may arise for non-minimum phase systems with an
integrator if the initial penalty is improperly chosen. Instability arising from state constraints is a result
of violating assumption I . We note assumption I is not a necessary condition for the stability of MHE,
but it is a necessary condition for the full information estimator (otherwise, a solution does not exist
in the limit as T — o0). From a practical point of view, we believe it suffices to consider the effect of
constraints on the full information estimator only, because the stability of the full information estimator
implies MHE is stable, and the problem we desire to solve is the full information problem.

Suppose assumption I is violated and the feasible region is non-empty (i.e. there exists sequence
Zo and {w}72, satisfying the constraints (4.3)). Under these assumptions, it is unlikely one will be able
to determine online that the problem is poorly posed, because the optimal cost ¢7 is finite for all T.
In regulation we do not have this limitation, because we can determine with the open-loop prediction
whether a feasible infinite horizon solution exists using the theory of output admissible sets (Gilbert
and Tan 1991). We do not, and cannot, have a similar theory in estimation, because it would violate
causality and destroy the underlying framework of the estimation problem. Therefore, one must be
careful with constraints in estimation. It is critical not to bias the estimate by adding unwarranted
information. The constraints should be used only to add information to the estimation problem not
available in the model equations. Examples include completing conservation equations (i.e. mass and
energy are positive quantities) and modeling random variables sampled from truncated distributions.
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Figure 4.5: Example 3: instability due to constraints.

In the regulator, the state constraints are used to maintain the process in desirable operating regions.
This situation does not arise in estimation, where we do not maintain but rather observe. Hence, we
expect infeasibilities might arise in regulation due to process upsets, which is why many researchers have
addressed constraint softening strategies for constrained regulation.

Consider again the system (4.10). We formulate the estimation problem with @ =1, R = 1,
N = 5, and the constraint C'z;, > 0.1. We restrict our attention to the full information estimator.
Suppose we choose £y = 0. This prior choice of the state is infeasible. However, the estimator can
always choose a feasible mo at a cost (zo — &o)'Tly ! (zo — #o). To introduce instability, we add the
constraint zo < 0. To satisfy the output constraint, the estimator forces z(3) — —oo. This response
is precisely what we expect in receding horizon control when there is an infeasible output constraint.
However, if we allow zo to have positive values, then the estimator is stable. Figure 4.5 shows the
response of the full information estimator with the initial penalty IIp = I and zo < 0. As expected, the
estimator is unstable when we choose ¢ < 0. However, if we remove the constraint on xg, then the
estimator is stable as expected.

4.6.3 Example of MHE with a smoothing update.

Consider again the output constraint problem discussed in Example 4.6.2 where we estimate the state of
the system (4.10) subject to the state constraint Cz; > 0.1. Figure 4.6 shows a comparison of the full
information estimator, MHE with a filter update, and MHE with a smoothing update with Il = I. The
kink at time k = 5 is due to the initialization of the smoothing updating strategy. Prior to k = 5, all of
the estimators are equivalent. To understand why MHE with the smoothing update diverges from, and
improves upon, the full information estimator and MHE with a filtering update, consider Figure 4.7.

While 522?\’271 conveys no information about the step disturbance (between times k = 0 and k = 27, the

estimate is negative), i'§.|3,)971 for j < (k — 1) indicates a possible step disturbance. Unlike MHE with a

filter update, this information is available to MHE with a smoothing update. Without constraints, all
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Figure 4.6: Example 4: comparison of MHE with a filtering and smoothing update.

three estimators are equivalent by construction.

One may view the constraint Czy > 0.1 as modeling error, because the true system does not obey
the constraints. It is in these situations that MHE with a smoothing update may prove useful, because
smoothing places more emphasis on recent information. As established by Findeisen (1997), a smoothing
update improves the stability margins of unconstrained MHE. In a similar vein, the smoothing update
in this example improves the robustness of the estimator subject to the spurious constraint by weighting
less the past information. We do not make any general claims concerning the robustness of MHE with
a smoothing update, only an observation that we believe is reasonable. Establishing and quantifying
concrete benefits of smoothing updates are topics for future research.
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Figure 4.7: Example 4: comparison of MHE with smoothing update and the full information estimates
of the state trajectory .1 at different times 7'.

4.7 Conclusion

In this chapter we derived sufficient conditions for the stability of moving horizon estimation. Three
separate formulations were presented. The key result of this work is that if the full information estimator
is stable, then MHE is also stable provided one does not introduce extra bias with the prior information.
To characterize this condition, we analyzed the estimation problem using forward dynamic programming
using the techniques established in Chapter 3.

4.8 appendix

4.8.1 Proof of Lemma 4.4.2

Proof. Let zo denote the initial condition of the system (4.6) generating the output sequence {y;} (i.e.
yr = CAFzo) and € > 0. Using the state equation, we have the following expression for £ < N:

-1

- — Als £=1—j A

Er Nygr1 = ABr N1+ E A GO NijT1-
Jj=0

Hence, we can derive the following bound for the estimation error:

N-1
AN (Fr—njr—1 — AT Vo) + Z AN Gidr_yyjir-all,
J=0
N-1
AN NEr- w1 = AT Naoll+ D AN NG Nzl (411)
=0

127 — AT o]

IN
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Let gpjr—1 := CZp7_1. If we utilize the inverse triangle inequality, we obtain the following inequality

N—1 N-1
> lor—nijrall = lyr-~+j = 91— N4j7-1l
7=0 7=0
N-1
= 2 lyr-n+j — CA%r_N7—1 + CA S NjT—1 — J7— N ji7—1l;
Jj=0
N—1 N—1
> lyrn4; — CA&r_nr—1ll = D ICA Sr_nir—1 — Gir—npjir—1ll-
j=0 7=0
If we rearrange the inequality, we obtain the new inequality
N—1 N—1 N—1
Z ||17T—N+j\T—1|| + Z ||CAJ§7T—N\T_1 —ﬁT—N+j\T—1|| > Z ||yT7N+j - CAJ@'T—N\T—I”- (4.12)
J=0 j=0 j=0
If we define the observability matrix
, !
o=[c, ac, .., avc |,
then
N—1
D ICAkzg — CARgo||* = (w0 — £0)'O'O(xo — &o)-
k=0

We can derive the following bound
N

—

Z |CA g — C A &0l > 1/ Apin (O'O)|lzo — oll.
=0
The observability assumption guarantees A i, (O'O) > 0 for N > n. Hence, we have

N-1

l&r—n 11— AT Vool <0 Y llyr—ntj — CA&r_nyral, (4.13)
7=0

where
o= 1
VA\min (0'0)

So, if we substitute (4.13) and (4.12) into (4.11), we obtain

N-1 N-1
187171 — ATzoll < QIAIN [ D llor—nrjr—1ll + D NICA &7 ni7—1 — Gr—N4jr—ll | +
P i=o
N-1
> AN TG b — Ny (4.14)
=0

Using the state equation, we obtain the following inequality for j < N:

Jj—1
NICAZr _Ni7—1 = 91 N4jrll < IC]| Z A 4G b7 — N1 - (4.15)
=0
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Substituting (4.15) into (4.14) we derive the following bound on the estimation error:

N-1 N-1 j-1
&rir—1 —arll < QAN { D lor—ngr-all+ D NCID AP IGldr—nsqr-all | +
N-1
AN NG dr— Nyl
=0
N-1
< ollAY Z <||17TN+J'|T1|| +
=0
i1 N—1—j
i—1- . [|Al NG,
||C||Z||A||] ! E”G”“wT—N-‘rf\T—l”+W”wT—N+J’|T—1” ;
=0
N-1 i1 N1
1 Il NG .
< el AN YD [+ len Yo 1Al Z||G||+T d*,
2 2 A
where
d* = j:T_IJT\lf??f’T_l {||T7j\T71||7 ||’UA)j\T71”} -

Without loss of generality, we assume A is not vacuous to generate the expressions for the last two
inequalities. If we let 77 = min{Amin(R 1), Amin (@)} and choose ¢ such that

2

€

= i1 N-1—j
1 A 7 G
el AN 3 <1 +ICI Y AP G + %)
j=0 £=0 4

0<17

then ||#7 — ATxo|| < € when

T

N EPN a1 —1,x
E vle_lR Vk|T-1 +wk\T_1Q Wgr-1 < 0,

-1
=N

=

and the Lemma follows as claimed. O

4.8.2 Proof of Lemma 4.4.4

Before proving Lemma 4.4.4, we first establish the following lemma concerning general quadratic pro-
grams.

Lemma 4.8.1 Let 6(z) = 2'Qz where the matriz Q is symmetric positive definite and the sets T' and
Q are closed and convexr with T C Q. If a solution exists to the following quadratic programs 6(2) =
min,cq 0(2), and 6(Z) = min,cr 6(z), then 6(2) > 0(2) + 0(Az) where Az =z — 3.

Proof. Substituting in for 2z, we obtain

0(2) = 62+ Az)
= 9(2) +(VO(2), Az) + O(Az).



92

Optimality implies (VO(Z),z — 2) > 0 for every z € Q 5. This inequality implies 6(2z) > 6(2) + 6(Az) as
claimed. 0

Proof. [Lemma 4.4.4] Without loss of generality, we take Z7_ny = 0. Consider an arbitrary p € Ry. Let

(@0~ ADre 1 Yioh y) =arg min {r(z{wed)  2(N3 2 {ug}) =},
AWk S p=T—N

where the minimization is subject to the constraints (4.3). If
Azp Nir-1 = Zr N1~ ET-NIT-1, Awgjr 1 1= Wrr—1 — Dpj7-1,
then, by Lemma 4.8.1, we have
Or(p) > $7 + dr(Azr_NjT—1, {Dwkr 1 }).
If we choose p = 7, then Azr_Nj7_1 =0, Awy7_1 =0, and
b1 (Azr_Ni7—1, {Awgr_1}) = 0.

Let Ap:= p — &7r. We obtain, therefore, the following inequality

dr(Azp_njr—1,{Awkr_1}) > Azf?iAfiuj}{qs(AZ:{ij}) : 2(N; Az, {Aw;}) :AP};
= (Ap)Ti;' (Ap),

and the lemma, follows as claimed O

4.8.3 Formulae for Smoothing Covariance

For notational simplicity, we make the following identities

1
0N72 .= [ C/ A/C/ . A(N—Q)IC/ ,

Yr-nN
yN72 . Yr—-N+1
T =
Yyr—2
and

Wn_2 =

R ces

CGQRG'C' + R CGQG'A'C’ e CGQG AN-3"¢’
CAGQG'C’ C(GQG' + AGQG'AC' + R

CAN-9GQG' ¢! CAN-3GQG'A'C o C(DN3ARGQGIAY)C + R

5 A proof by contradiction is immediate — assume there exists a z in 2 that violates the above condition and consider a
convex combination between z and 2, which lies in 2, and calculate cost; it decreases from 6(2) along the line, contradicting
optimality. In other words, —V6(2) € Tq(2) where T(2) denotes the normal cone to Q at 2:

Ta(2) ={z : (z! —%,2) <0, Vz! €Q}.
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4.8.4 Proof of Lemma 4.5.2

Proof. 1In light of Lemma 4.4.4, it suffices to demonstrate
Tr_n(p) = (p— d7—n)'TI7! (P — E7—N).
From Lemma 4.5.1, we have the following equality

(p— JﬁT—N|T—2)'H;1,N|T,2(p —Zr_NjT—2) + OT_1 =

T—2
IT%"in2 Z ’U;ngl’Uk + w}cQ’lwk + (p - :i'TfN)IHq_iN(p - .’Z'T,N) :
{witizr_n k=T—N

g =yr — Cx(k — (T — N);p, {wj})} + P

T 2
= min { Z v R Mo + w,Q twy, : vp = yr — Cax(k — (T — N);p, {w]})} +

{widr % Lpsron
(p—2r—n)T7' y(p— F7-N) + PN
Let
T—2
Dyoa) = min, 4 S 4R ok +uwlQ wn ¢ o =y — Ca(k— (T — N);p, {wj})}.
{wilrZn k=T—-N
We may evaluate Dy o(p) using induction. Consider
T—2
Di(p) = min Z v R oy, + wl, Q@ twy, vk =y, — Ca(k — (T — 3);p, {w;}) ¢ -
{w;}773 k=T—3

Evaluating the minimization analytically, we obtain
! 1

([iﬁ‘i]‘ [ CCA]p>I[1§ R+C(2QG’C’ ]_ (Hi‘i]‘[&]p)’
- (I -Lal we (=[]

Now assume

D1 (p)

Dn_s(p) = (V7 ° - ON—BP)I Wxls (V7% — On-sp)

for the induction hypothesis and consider Dy _1(p). A standard dynamic programming decomposition
leads to the following reformulation

vr_n = Cp }

Dy_2(p) = min {DN—3(Z) + v NyR'oron + wh_nyQ lwron o= o(1; . wrN)

wr_ N
From the result concerning D (p), we have the expression
Dy s(p) = (V52— ONfzp)' Wal, (VY2 = On_ap).
So,
Tr-n(p) =(p - ijT—N\T—2)IH;£N|T4(p — Zr_Nj7—2) — DN2(p) + (P5_y — Do n)-
By inspection
Tr-n(p) = (p — 7-~N)'TIp Ny (P — E7-N),

and the lemma follows as claimed. O
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Chapter 5

Model Predictive Control

5.1 Introduction

The essence of model predictive control (MPC) is to optimize, over an open-loop time sequence of
controls, the process response using a model to forecast the future process behavior over a prediction
horizon. A conceptual picture of the prediction horizon is shown in Figure 5.1. Feedback is obtained
by injecting the first control into the process and then resolving the optimization problem when new
process measurements become available. The explicit use of a process model and prediction horizon are
conceptually appealing to the practitioner and partially accounts for the popularity of MPC in industry.

While the concept of open-loop optimal feedback is relatively old (see for example (Dreyfus
1962)), MPC, or moving horizon control as it first was called, was first studied systematically in the
automatic control community by Kleinman (1970), Thomas (1975), and Kwon and Pearson (1977, 1978).
Whereas the initial interest in MPC by the automatic control community was limited to unconstrained
linear time-varying systems, MPC was enthusiastically embraced by the process control community as
the prevailing advanced control strategy to handle constrained multivariable systems. The application
of MPC in process control was first documented by Richalet and coworker (1978) and Cutler and Ra-
maker (1980). The positive response of the process control community to MPC was due in part to these
papers discussing successful industrial implementations rather than theoretical issues. A current survey
of MPC is the process industries is given by Qin and Badgwell (1997, 1998), where they document over
two thousand commercial applications of MPC.

Aside from the initial results for unconstrained linear time-varying systems, the first general
stability result for MPC was established by Chen and Shaw (1982), who proved stability for unconstrained
nonlinear systems using a terminal equality constraint. This result was further generalized by Mayne and
Michalska (1990, 1991). Keerthi and Gilbert (1986) established the first stability result for constrained
nonlinear systems again using a terminal equality constraint. This article is one of the key references in
MPC theory, because it was the first to address constraints explicitly. Meadows and coworkers (1995)
further demonstrated that MPC could stabilize systems that are feedback linearizable and also systems
that cannot be stabilized by continuous feedback policies. The early formulations of MPC all relied on
a terminal equality constraint for stability. Satisfying this constraint, however, is often computationally
difficult, and optimization algorithms can only satisfy nonlinear equality constraints asymptotically.
To relax the requirement of a terminal equality constraint, Michalska and Mayne (1993) established
stability for constrained nonlinear systems using a terminal constraint set. They established also that
optimality is not necessary for stability and proposed a suboptimal version of MPC. This article is the
other key reference in MPC theory and is the foundation for most current MPC research. An alternative
formulation of MPC using contraction constraints was proposed by Polak and Yang (19934, 19935, 1993).
However, as discussed by Mayne (1997), feasibility issues may arise with contractive MPC.

In parallel to work done on constrained nonlinear stability, most process control researchers
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Figure 5.1: The prediction horizon in MPC

focused on constrained linear stability. Following the proposal of Bitmead, Gevers and Wertz (1990) for
unconstrained linear systems, this work focused on modifying the terminal penalty for stability. The
first proposals for constrained linear systems using a modified terminal penalty were made by Keerthi
(1986) and Sznaier and Damborg (1987). These results were further developed (though independently)
by Rawlings and Muske (1993). It is interesting to note a similar proposal was made earlier by Gauthier
and Bornard (1983) for unconstrained linear systems. Further extensions were made by Chmielewski and
Manousiouthakis (1996) and Scokaert and Rawlings (1998). Building on these results for constrained
linear systems, many researchers have made analogous proposals for constrained nonlinear systems using
a terminal constraint set combined with a modified terminal penalty. Examples include Parisini and
Zoppoli (1995), Chisci, Lombardi and Mosca (1996), De Nicolao, Magni and Scattolini (1997), Chen and
Allgower (1998), and Scokaert et al. (1999).

In addition to the research on MPC for constrained linear and nonlinear systems, there is a
large amount of literature on MPC for unconstrained linear systems. Much of this literature focuses
on generalized predictive control (GPC): MPC with transfer functions rather than state-space models.
This literature is not reviewed, as it does not consider constraints. For a comprehensive review of the
MPC literature, the reader is directed to the book by Camacho and Bordons (1998) and the survey
papers by Garcia and coworkers (1989), Rawlings and coworkers (1994), Kwon (1996), Lee and Coo-
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ley (1997), Morari and Lee (1997), De Nicolao and coworkers (1998), Rawlings (1999), and Mayne and
coworker (2000).

In this chapter we review the basic theory of nonlinear MPC. The details of (constrained) linear
MPC are discussed in the subsequent chapters. The discussion is based on the review article by Mayne
et al. (2000). We begin by defining MPC in Section 5.2. Our notation, definitions, and basic assumptions
are introduced in Section 5.3. We then derive general stability results for MPC in Section 5.4 and show
how these results encompass most MPC stability results discussed in the literature. We conclude by
discussing computational issues and suboptimality in Section 5.5.

5.2 Problem Statement
Suppose the process is modeled by the following nonlinear discrete-time system

Thy1 = f(Tr,ur), (5.1)

where f : R* x R™ — R™ and f(0,0) = 0. Let z(k; 2z, {u;}) denote the solution of the difference equation
(5.1) at time k subject to the initial condition zg = z at time 0 and control sequence {uj};“;é. We
assume the physical limitations of the process (e.g. saturating valves) and the operating conditions (e.g.
safety limits) require that the control and state sequences satisfy the following constraints

ug € U, T € X,

where the sets U C R™ and X C R” are closed and contain the origin.
Consider the following open-loop optimal control problem

Pu(): VA= min {VaGe {ue)) ¢ () € Un(2))

Uk S =0
where the objective function is defined as

Vn(z, {ur}) := 2 lug,zr) + F(zN)

k=0

with z, := z(k; 2, {u;}) and the constraint set is given by

up, €U, k=0,..., N—-1
Un(2) = {uehh' : z(k;2,{u;}) €X, k=0,...,N
o(N; 2, {u;}) € ¥,

We assume the functions [ : Ux X — R and F' : X — R and terminal constraint set X} is closed and
contains the origin. Let {u}(z)}n, denote the solution, assuming it exists, to Pn(z). We define model
predictive control (MPC) as the feedback policy un(-) := u§(-). In particular, the first element ug(z) of
the optimal sequence {uj(2) kN:}]l is injected into the process. When a new measurement of the state 2T
becomes available, we solve Py (z1) and repeat the process. The terms “receding horizon” and “moving
horizon” arise from the sliding prediction horizon (see Figure 5.1). MPC is called an open-loop feedback
policy, because Py (-) is an open-loop optimal control problem; in particular, we optimize over fixed

controls rather than feedback policies.

5.3 Notation, Definitions, and Basic Assumptions

The Cartesian product x5 ;A of a set A is denoted by AN. We use the symbol || - || to denote any
vector norm in R™ (where the dimension n follows from context). Let R>o denote the nonnegative real
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numbers and

k times

For € > 0, N :={z : ||z|| < €}.

Definition 5.3.1 A function a : R>9 = R>o is o K-function if it is continuous, strictly monotone
increasing, a(z) > 0 for x # 0, a(0) =0, and lim_, a(z) = co.

Fact 5.3.2 Suppose a(-) is a K-function. Then, the function a(-) and its inverse a=' : R>g = R>q are
continuous (Royden 1988). Furthermore, a '(-) is a K-function.

Definition 5.3.3 A system is constrained stabilizable if, for all z € X, there exists an input sequence
{ur}2o € U (2) and o K-function ¢(-) such that

o

D M@ 26l < @Iz,

k=0

where Ty, := x(k; 2, {a;}).

In order to guarantee the problem Py (-) is well-posed, we assume that the functions f(-), I(-)
and F(-) satisfy the following conditions.

A0 The function f(-) is continuous.
A1 The functions I(-) and F(-) are lower semi-continuous.

A2 There exist K-functions n(-) and 7(-) such that

n(l[(w, 2)) < 1w, ) <A([I(u, 2)])
n(([(@)ll) < F(z) <

for all u € U and z € X.
Definition 5.3.4 Consider the system

Tre1 = f(zw), (5.2)

and let x(k; z) denote the solution of the difference equation (5.2) at time k subject to the initial condition
xzo = z at time 0. The system (5.2) is stable if, for all € > 0, there exists a number § > 0 and a positive
integer T such that if o € XN Nj, then z(k;x0) € N, for all k> T.

To prove a solution exists to Px (z), we need to characterize the set of initial states Xy for which
the set X} is reachable from in time V. Let

Xy = {:17 : H{uk}ff:_ol € UN(JU)} .

If Xy is not reachable from any state in time N, then Xy = (). Likewise, if Xy is reachable from all
states in time N, then Xy = R™. If the system (5.1) is linear (i.e. zpy1 = Azy + Bug), N > n, the
control is unconstrained (i.e. U= R™), and rows of the matrix

(B, AB, A’B,..., AN"'B]

are linearly independent (i.e. the pair (A, B) is controllable), then, for all Xy C R*, Xy = R".
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5.4 Stability

Optimality does not imply stability (Kalman 1960a). Additional measure are necessary, therefore, to
guarantee stability. One typically guarantees stability by forecasting over an infinite horizon (solve
the problem P, (-)). Both the linear quadratic regulator (LQR) and M control implicitly employ
an infinite horizon. However, for nonlinear systems, it is often impossible to forecast over an infinite
horizon: to do so, one needs to evaluate an infinite summation. Furthermore, when a system possesses
unstable dynamics, it is necessary to optimize over an infinite sequence of controls. This requirement
is computationally impossible, unless the infinite sequence of controls can be represented with a finite
basis. For linear systems, such a basis exists. However, for nonlinear systems, no universal basis exists
unless one employs the terminal equality constraint X; = {0}.

The standard strategy to formulate a stabilizing MPC feedback policy (contractive MPC being
the main exception) is to employ, either explicitly or implicitly, a local feedback policy k¢(-) in conjunc-
tion with the terminal penalty F'(-) and terminal constraint set Xy. Typically, kz(-) is a stable linear
feedback policy (i.e. ky(x) = Kz) for the linearized system xp4+1 = Azy + Buy, where

A 0f(x,0) 5. af(0,u)

, :
or |, ou |0

The terminal penalty F(-) is typically chosen as the local (quadratic) Lyapunov function for the system
ZTp+1 = (A + BK)xzy. If the pair (A, B) is controllable and the function f(-) is sufficiently smooth, then
there exists an a > 0 and a positive definite matrix P such that the level set £, = {z : 2T Pz < a} is
positive invariant for the system 11 = f(x, k7(xr)) (Sontag 1990). In other words, the local feedback
policy x¢(-) will stabilize the system (5.1) for all g € L,. If the terminal penalty F(-) is a local
Lyapunov function for the system zy41 = f(zk,£¢(xr)) and the terminal constraint set Xy, typically
a level set of the terminal penalty F(-), is chosen such that it is positive invariant and Xy C XN X,,
where X, = {z : kys(z) € U}, then the set X} is output admissible (i.e. ks(-) satisfies the constraints
U and X for all x € Xy). The terminal penalty and the terminal constraint set, implicitly through the
local feedback policy x¢(-), may be used then to approximate the tail of an infinite prediction horizon;
ie., for all x € &y,

oo
F(2) = Zl(mk,mf(a:k))
k=0
where z;, denotes the solution of the system zyy1 = f(xg,k7(zx)) at time k subject to the initial
condition g = z at time 0. This construction allows one to approximate an infinite-horizon controller
with a finite-horizon controller. So long as the approximation errors are small, infinite-horizon properties
such as closed-loop stability result.
To guarantee stability, we require that the terminal penalty F(-), local feedback policy ¢(-),
and terminal constraint set Xy satisfy the following conditions.

CO ky¢(z) € Ufor all z € A. (output admissibility)
C1 f(z,k5(x)) € Xy for all x € Xy. (positive invariance)
C2 F(z) > F(f(z,k¢(z)) +U(ks(x),z) for all z € Xy. (F(-) is a local Lyapunov equation)

As we demonstrate at the end of this section, by appropriately defining k¢(-), F(-), and Xy, most (stable)
formulations of MPC satisfy conditions C0—C2. Consequently, we can generalize many MPC stability
results by proving stability for conditions C0—C2.

Proposition 5.4.1 If assumptions A0-A2 hold, then a solution exists to Pn(x) for all x € Xn.
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Proof. By the assumption z € Xy, there exists {@y} € Un(z). Let Vi (z) = Viv(z, {u;}) and consider
the set

A= {{uk}g:_ol s {ur} € Un(2), Vn(z,{ur}) < VJ%{} .
By assumption AO and A1, the objective function V(z,-) is lower semi-continuous. The set
Q= {{uk}iv::)l : VN(.’L‘, {Uk}) € [07V_[3]]}

is closed, because the inverse image of a closed set under a lower semi-continuous function is closed (Berge
1963). The set Un(z) is closed, because the function f(-) is continuous and the sets U, X, and X} are
closed. The set A is closed, because it is the intersection of the closed sets Q and Uy (z). By assumption
A2, there exists a K-function n(-) such that I(u,z) > n(||u,z|]) and F(z) > n(||z]|). These inequalities
imply the set F is also bounded, because F(zy) < Vi and l(ug,zx) < Vi for k=0,...,T — 1. The
set A is bounded, because A C . Hence, the set A is compact. Existence of a solution follows from the
Weierstrass Maximum Theorem. d

Let

Tp1 = G(ag) = f(@r, pn (k)

denote the closed-loop dynamics of the system (5.1) subject to the MPC feedback policy unx(-). The
following proposition establishes stability by demonstrating that the cost function V3 (-) is a Lyapunov
function for the system zp11 = G(zk).

Proposition 5.4.2 Suppose F(-), 7(-), and X satisfy conditions C0-C2, assumptions A0-A2 hold,
and the system (5.1) is constrained stabilizable, then, for all N > 1, the system

Tr+1 = G(.Z‘k)

is stable and G®)(2) = 0 as k — oo for all z € X.

Proof.  Existence of a solution to Py(-) is established in Proposition 5.4.1. We first demonstrate
convergence. Let z € Xx. We know {uj (2} € Un(z) implies

{ui(2),u3(2),- .. ,un_1(2)} € Un-1(G(2)).
Let 23 (2) = 2(N; 2, {u}(2)}). Existence implies z3(z) € X; and condition C1 implies
fan(2),k5(2)) € X
Hence,
{ui(2),u5(2),- .. ,un_1(2), ks (an(2))} € Un(G(2)).
Optimality implies the following inequality
Vi (2) = VR(G(2)) 2 I(z,u5(2)) + F(z (2)) — (kg (2N (2)), 28 (2)) + F(f () (2), 55 (@3 (2))))) -
Condition C2 implies
VR (2) 2 Uk (2), 2) + VR (G(2)). (5.3)

As V3 (-) is bounded below (by assumption A2), the inequality (5.3) implies that the sequence V3 (G®* (2))
converges. Therefore,

HGP® (2), WGP (2)) = 0
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as k — 00, and, by assumption A2, G*)(z) = 0 as k — 0.
To prove stability, let € > 0 and 7' = 0. Optimality and assumption A2 imply

(N + Dn(e(2)) 2 Vi (2) 2 n(llz[]).-

Likewise, the above inequality and inequality (5.3) imply
(N + 1)n(e(2)) 2 VN (G(2)) 2 n(lIG(2)I])-

Hence, we have

(N + (=) > n(IGP(2)])

<o ((329)

where the existence of the K-functions y~!(-) and ¢~!(-) follows from Fact 5.3.2, then the proposition
follows as claimed. O

for all £ > 0. If we choose

5.4.1 Case Examples

In this section, we apply the results of Proposition 5.4.2 to some MPC formulations discussed in the
literature.

Infinite-Horizon MPC

Consider the infinite-horizon open-loop optimal control problem

Poo(2) : Vi(z) = {H}lll’l {Zl Ug, ) : {ur} € U (2), z :=z(k;2, {uj})}

and the associated infinite-horizon MPC feedback law pioo(-) := ug°(z), where {uf°(2)}72, denotes the
solution to Puo(z). Infinite-horizon MPC was first discussed by Keerthi and Gilbert (1988). This result
has only theoretical significance, because P (-) is, in general, impossible to solve. However, using the
principle of optimality, we can recover infinite-horizon MPC from finite-horizon MPC if we choose the
terminal penalty F(-) = V(-) and Xy = X. This result is important when we consider constrained
linear MPC.

Proposition 5.4.3 Suppose assumptions A0-A2 are true and the system (5.1) is constrained stabiliz-
able, then P (z) has a solution for all z € X.

Proof. The stated assumptions satisfy the infinite horizon existence result (Theorem 2) of Keerthi and
Gilbert (1985). O

Remark 5.4.4 Appendiz A establishes existence and uniqueness when the system (5.1) is linear, the
objectives are quadratic, and the sets U and X are convex.

Remark 5.4.5 Proposition 5.4.3 guarantees F(-) is defined on X.

Lemma 5.4.6 Suppose assumptions A0-A2 are true and the system (5.1) is constrained stabilizable.
Then, Vii(z) = VE(z) for all x € X. Furthermore, {u?(z)}ivz—()l is a solution to Pn(z).

Proof. As Xy = X, constrained stabilizability guarantees Xy = X. The remaining steps of the proof
involve decomposing the problem P, using dynamic programming and the principle of optimality (c.f.
Bertsekas (1995a, 1995b)). O
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Lemma 5.4.7 Suppose assumptions A0-A2 are true and the system (5.1) is constrained stabilizable.
IfF() =Vo()), Xr =X, and k¢ = poo(-) := ug°(-), then conditions C0-C2 are satisfied.

Proof. Proposition 5.4.3 implies u5°(z) € U for all z € X, and, therefore, condition CO is satisfied.
{uP(2)}29 € Ux(z) guarantees condition C1 is satisfied. Using the principle of optimality, we know
that the value function V., (-) satisfies the following discrete-time Hamilton-Jacobi-Bellman equation

F(z) = rrgn{l(u,z) + F(f(z,u); uelU, f(z,u)eX},
= Wug(2),2) + F(f(z,u5(2))),

for all z € X. Consequently, F'(-) satisfies C2 by equality. O

Corollary 5.4.8 Suppose assumptions A0-A2 are true and the system (5.1) is constrained stabilizable.
Then, infinite-horizon MPC is a stable control policy for the system (5.1) and G® (2) = 0 as k — oo
for all z € X..

Corollary 5.4.9 Suppose assumptions A0-A2 are true, the system (5.1) is constrained stabilizable, and
N>1. IfF(-) =Vo("), Xr =X, and k5 = poo(-) := u§’(+), then finite-horizon MPC is a stable control
policy for the system (5.1) and G*®) (2) = 0 as k = oo for all z € X.

Remark 5.4.10 For constrained linear systems, it is possible to provide an analytic expression for Voo ()
in a neighborhood of the origin. The details are discussed in Chapter 6.

Terminal-State MPC

One strategy to forecast over an infinite horizon is to employ a terminal equality constraint Xy = {0}. In
this case, the infinite-time behavior of the process is known; if we choose {uj(-)}32 5 =0, then zxy =0
and f(0,0) = 0 imply 2 = 0 for ¥ > N. We may embed this strategy in our framework if we define
F(-) =0, kg(-) =0, and Xy = {0}.

Lemma 5.4.11 If F(-) =0, k¢(-) =0, and Xy = {0}, then conditions CO-C2 are satisfied.
Proof. As0€ U, 0€X, f(0,0) =0, and 1(0,0) = 0, conditions CO-C1 are satisfied trivially. O

Corollary 5.4.12 Suppose assumptions A0-A2 are true, the system (5.1) is constrained stabilizable,
and N > 1. Then, terminal-state MPC is a stable control policy for the system (5.1) and G®)(2) = 0
as k — oo for all z € Xn.

Quasi-Infinite-Horizon MPC

In addition to their stability properties, infinite-horizon control laws have the property that the open-loop
predictions are identical to the closed-loop response in nominal application. The effect of the controller’s
tuning parameters (parameterizing the stage costs I(+)) are, therefore, more intuitive for infinite-horizon
formulations than for finite-horizon formulations, where the open-loop predictions do not necessarily
match the closed-loop response. As the goal of the prediction horizon is to anticipate the closed-loop
response, one should design the controller such that the finite-horizon predictions approximate the
infinite-horizon predictions.

One can approximate infinite-horizon MPC using the linearized dynamics of the system (5.1) (c.f.
(Parisini and Zoppoli 1995, Chen and Allgéwer 1998)). We refer to this strategy as quasi-infinite-horizon
MPC. Most recent proposals for nonlinear MPC are based on this idea. Suppose

l(u,z) = % (uTRu + wTQx) ,
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where the matrices R and () are positive definite, and let

_ 0f(z,0)
A:= S

_ 0f(0,u)
T du

, B:

z=0 u=0

We assume the pair (A, B) is controllable. If we consider the unconstrained linear system zgy; =
Azy + Buy, then

o>
2T Pz = min ZukTRuk +aFRey, : o =2, w41 = Azp + Buy, o,
{u}zo=o k=0
where the matrix P is the unique positive definite solution of the following algebraic Riccati equation
P=Q+ A" (P-PB(R+B"PB)™'B"P) A.

If the state z is sufficiently close to the origin and the function f(-) is sufficiently smooth, then the
linearized dynamics accurately describe the behavior of the nonlinear system 1 = f(zk,ux), and we
have

2TPz = Voo (2)

assuming the nonlinear problem is unconstrained: U = R™ and X = R". Furthermore, the optimal
(unconstrained) linear solution is close to the optimal (unconstrained) nonlinear solution; i.e.

up(z) = (R+BTPB)"'BTPAz,
= Kz,
~  uy’(2).

Using these elementary results, we can approximate constrained infinite-horizon MPC with finite-
horizon MPC. If we choose F(z) = T Pz, k¢(x) = Kz, and

X ={x : 2T Pr < a},
where o > 0 chosen such that

max{F(f(z, iy (z) — F(z) + (1/2)27 (Q + K RK)a} < 0 (5.4)

and Xy C Xk := {z : z € X, Kz € U}, then conditions C0-C2 are satisfied. The existence of
such a number a > 0 is guaranteed provided f(-) is twice continuously differentiable, the pair (A, B)
is controllable, and there exist numbers ¢; > 0 and e2 > 0 such that N, C U and N, C X (Scokaert
et al. 1999).

Lemma 5.4.13 If F(z) = 27 Pz, ks (z) = K(z), and X; = {z : 2T Pz < a} where a > 0 satisfies the
inequality (5.4) and the inclusion Xy C Xk, then conditions C0-C2 are satisfied.

Proof. The conditions C0-C2 are satisfied by construction: = € Xy implies kyz € U and

T Px

f@, k(@) Pf(z,k5(z)) + (1/4)27(Q + KTRK)x

f(@, 55 (2))" Pf (@, 57 ().

Consequently, conditions CO and C1 are satisfied. If we substitute in for £z(-), then

o

vV IV IV

lks(z),2) = %xT (Q+ K'RK)

and C2 is satisfied by inequality (5.4). O
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Corollary 5.4.14 Suppose assumptions A0-A2 are true, system (5.1) is constrained stabilizable, f(-) is
twice continuously differentiable, the pair (A, B) is controllable, and N > 1. Then, quasi-infinite-horizon
MPC is a stable control policy for the system (5.1) and G®)(2) = 0 as k — oo for all z € X

Remark 5.4.15 When implementing nonlinear MPC, one typically ignores the terminal constraint set
in the optimization problem. Instead, one choose the horizon length sufficiently large such that xn € X.
If we assume the set X is compact, then it is straightforward to show the existence of an integer N such
that £(N; z,{uj(2)}) € Xy for all z € Xn. This strategy was employed by Alamir and Bornard (1995),
Parisini and Zoppoli (1995), and Jadbabaie, Yu and Hauser (1999) for unconstrained nonlinear systems.

5.5 Computational Issues and Suboptimality

If the system 5.1 is linear, the cost functions quadratic, and the sets U and X are polyhedral convex sets,
then the optimal control problem Py (-) is quadratic program. Efficient software exists for the solution
of quadratic programs. We can improve the efficiency of the optimization algorithms by exploiting the
sparse structure of Py(-). Chapter 8 discusses one such approach. If the system (5.1) is nonlinear, then
the optimal control problem Py (-) is a nonlinear program. Many algorithms exist for solving nonlinear
programs (c.f. Nocedal and Wright (1999)). However, the problem is nonconvex, and optimization
may not yield global solutions. Global optimization is an option; however, unless global information
such as Lipschitz constants are available, the algorithm needs to sample a dense subset of the decision
space (Stephens and Baritompa 1998). The algorithm requires this information to verify whether a
particular solution is global. As global information for the problem Py (-) is rarely available, we need
to guarantee stability in the absence of optimality. Michalska and Mayne (1993) and Mayne (1995a)
demonstrate that optimality is not necessary for stability; rather, feasibility suffices. These ideas were
developed further by Scokaert et al. (1999).

Finding a feasible element is itself a nonconvex optimization problem, though it is easy to verify
whether a given element is feasible. One, therefore, can circumvent the computational difficulties of
global optimization by implementing a suboptimal version of MPC.

Algorithm: Suboptimal MPC
Data «a € (0,1].

Step 0 Given state zo at time j = 0, find a control sequence {uy (xg)}ff:_ol € Un(zo). Let Vi (zo) =
VN (2o, {ur(x0)}). Set j =1.

Step 1 Given state zj at time k, find a control sequence {uy(z;)}r-y" € Un(z;) such that
Vi (zj-1) — ad(uo(zj-1),Tj-1) > Vv (@, {ur(z;)}).-
Set Vi (z;) = Vi (z;, {us(z;)})-
Step 2 j + j+ 1. Go to step 1.

Lemma 5.5.1 Suppose F(-), k¢(-), and X} satisfy conditions C0-C2, assumptions A0-A2 hold, and
N > 1. Ifxg € Xn, then, for all k > 0, there exists a control sequence {uk(xj)};v:*ol € Un(z;) such that

Va(@j1) — ad(uo(zj-1),x5-1) > Vn (@), {ur(z;)}).

where xj41 = Ax; + Bug(z;).
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Proof. The proof is by induction. z¢ € X implies there exists {uk(:lro)}f:/:_()1 € Un(zo). Let Vi (zo) =
Vn(zo, {ur(xo)}). Conditions CO and C1 imply

{ui(zo),u2(x0), ... ,un_1(z0), k¢(zn(20))} € Un(G(20)).

If we choose

{ue(z) g = {wa (o), u2(20), - - s un—1(20), ks (2(N; 20, {uj (o) }))}
then condition C2 implies

Vi (@) = Vi (@1, {ur(z1)}7155") 2 Luo(wo), o).
Now suppose {uy(z;)} ' € Un(z;) and
Vi (zj-1) — al(uo(zj-1),5-1) 2 Viv(zj, {ur(z;)}).

If we choose

{u(zin 1oy = {ua(e)) ua(z;), ... un—1(z5), k(@ (N5 25, {uj(2)}))}
then

Vi (@5) = Vv (@i, {uk(@5)}) 2 Uuo(;), ;).

and the lemma follows as claimed. O

Proposition 5.5.2 Suppose F(-), f(-), and X} satisfy conditions C0-C2, assumptions A0-A2 hold,
N > 1, the system (5.1) is constrained controllable, and there exists a number a > 0, a K-function ~(-),
and control sequence {u(z) iv:—o1 such that, for all z € N,

o(llzll) = Vv (2, {ur(2)})-

Then suboptimal MPC is a stable control law for the system (5.1) and G®(z) = 0 as k = oo for all
z € XN.

Proof. We first establish convergence. By assumption
Vi (@) — al(uo(@j-1), mj-1) > Vy(z;) > 0.

This inequality implies the sequence {Vn(z;)} is nonincreasing. As Vn(-) is bounded below (by assump-
tion A2), the sequence {Vn(z;)} converges and

To prove stability, choose § < o '(e) and T = 0. The existence of o~ !(-) follows from Fact 5.3.2. O

Remark 5.5.3 The condition

o(llzll) > Va (2, {ur(2)})-

states that the suboptimal value function Vn(-) is continuous at the origin. In other words, if the state
x 1s close to the origin, then the control is small.
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5.6 Conclusion

In this chapter we reviewed the basic theory of nonlinear MPC. We limited our discussion to state
feedback. As we demonstrated, we can generalize many MPC results using the conditions C0-C2.
In the subsequent chapters, we discuss constrained linear MPC and associated issues related to target
tracking, computation, robustness, and output feedback. While these issues are relevant also in nonlinear
MPC, their development is easier for linear systems and many technical issues still need to be resolved
in order to apply these results to nonlinear systems.

Issues not discussed included inverse optimality (Magni and Sepulchre 1997) and hybrid control
using MPC with mixed-integer nonlinear programming (Slupphaug and Foss 1997, Bemporad and Morari
1999)). The latter is a promising area of research. In most processes, the regulatory control system and
the supervisory logic are designed separately, and the interactions between the two levels are handled in
an ad-hoc manner. In the hybrid control framework, these two element are combined, thereby allowing
one to optimally configure the two regulatory levels (c.f. (Branicky, Borkar and Mitter 1998)) The
hybrid control framework allows also for discrete controls, such as on/off values and logical overrides,
and prioritized objectives and constraints. However, these problems are combinatorial, and the online
solution of these optimization problems may not always be feasible.
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Chapter 6

Steady States and Constraints in
Linear Model Predictive Control!

6.1 Introduction

Model predictive control (MPC) is an optimization based strategy that uses a plant model to predict
the effect of potential control action on the evolving state of the plant. At each time step, an open-loop
optimal control problem is solved and the input profile is injected into the plant until a new measurement
becomes available. The updated plant information is used to formulate and solve a new open-loop optimal
control problem.

Since MPC is formulated as an optimization problem, inequality constraints are a natural ad-
dition to the controller. The ability to handle explicitly input and output constraints may be viewed
as one of the major factors for the success of MPC in process control. Operation at constraints is so
common that it may be regarded as the rule rather than the exception in chemical process operations.
Consider the classic example of temperature control of an exothermic reactor. In order to maximize
profit, one may wish to maximize reactor feed rate. At some feed rate, however, the cooling capacity
reaches a constraint. As disturbances, such as heat exchanger fouling occur, the feed rate is manipulated
to maximize production with some safety margin while maintaining cooling capacity at its constraint.
If a disturbance were to decrease the reactor feed temperature, however, then the cooling rate would
be decreased so the reaction would not extinguish. So in many practical situations of this type, inputs,
cooling rate in this example, are maintained at constraints in the normal steady-state operation. The
main purpose of this chapter is to extend the existing linear MPC theory to handle this important
industrial case.

While constraints improve the appeal of MPC as an advanced control strategy, they complicate
the implementation of the controller. In addition to the computational burden, constraints necessitate
additional safeguards to guarantee that the controller is stabilizing. One method to guarantee nominal
stability is to formulate the model predictive controller on an infinite horizon (Keerthi and Gilbert 1988).
Infinite horizon formulations are appealing because, for the nominal case, the predicted open-loop and
the achieved closed-loop responses are identical and the effect of tuning parameters is, therefore, more
intuitive.

In this chapter we formulate MPC as an infinite horizon optimal control strategy with a quadratic
performance criterion. We use the following discrete time model of the plant

Tjr1 = Azj + B(Uj +d), (6.1a)
y; = Czj +p, (6.1b)

IThis chapter was published in essentially the same form as Rao and Rawlings (1999)
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where z; € R” is the state vector, u; € R™ is the input vector, and y; € R? is the output vector.
AeR™™™ BeR"™™ and C € RT*™ are, respectively, the state transition matrix, the input distribution
matrix, and the measurement matrix. The subscript j € I denotes the discrete time sampling instant.
The affine terms d € R™ and p € R? serve the purpose of adding integral control. They may be
interpreted as modeling the effect of constant disturbances influencing the input and output, respectively.
Muske and Rawlings (1993) provide a discussion of how to estimate p and d. Assuming that the state of
the plant is perfectly measured, we define model predictive control as the feedback law u; = g(z;) that
minimizes

1

=3 Z — %) TQ —7)+ (uj — ﬂ)TR(uj — 1) + Au?SAuj, (6.2)
j=0

where Awy; 2 u;j —uj—1. The matrices ), R, and S are assumed to be symmetric positive definite. The
vector ¢ is the desired output target and @ is the desired input target, assumed for simplicity to be
time invariant. When the complete state of the plant is not measured, as is almost always the case, the
addition of a state estimator is necessary. Since state estimation is beyond the scope of this article, we
assume that the control and estimation problems can be separated.

The steady-state aspect of the control problem is to determine appropriate values of (yss, Tss, Uss)
satisfying the following relation

Zss = Axss + B(ugs + d), (6.3a)
Yss = Cxgs + p. (63b)

Ideally, yss = § and ugs = u. However, process limitations and constraints may prevent the system
from reaching the desired steady state. The goal of the target calculation is to find the feasible triple
(Yss» Tss, Uss) such that yss and uss are as close as possible to § and 4. We address the target calculation
in Section 6.2.

To simplify the analysis and formulation, we transform (6.2) using deviation variables to the
generic infinite horizon quadratic criterion

1 oo
= 5 Z Z;‘FQZ] + UJTR’U]' + A’UfSA’Uj. (64)
=0

The original criterion (6.2) can be recovered from (6.4) by making the following substitutions:
2j —Y; — Css — P, Wj ¢ Tj — Tgs, Uj < Uj — Uss-

By using deviation variables we treat separately the steady-state and the dynamic elements of the control
problem, thereby simplifying the overall analysis of the controller.

The dynamic aspect of the control problem is to control (y,z,u) to the steady-state values
(yss, Tss, Uss) in the face of constraints, which may be active at the steady-state operating point. This
part of the problem is discussed in Section 6.3. In particular we determine the state feedback law
v; = p(w;) that minimizes (6.4). When there are no inequality constraints, the feedback law is the
linear quadratic regulator. However, with the addition of inequality constraints, there may not exist
an analytic form for p(w;). In such cases where an analytic solution is unavailable, the feedback law
is obtained by repetitively solving the open-loop optimal control problem. This strategy allows us to
consider only the encountered sequence of measured states rather than the entire state space. For a
further discussion, see Mayne (1995a).

If we consider only linear constraints on the input, input velocity, and outputs of the form

Umin < Dug < Umax, —Ay < Aup < Ay, Ymin < CZk < Ymax, (6'5)
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where D € R**™ and C € R"¢ >4, we formulate the regulator as the solution to the following infinite
horizon optimal control problem

1 o0
min  &(z;) = - Z 28 Qzk + vi Ruy + Avi SAwy, (6.6)
{wk,vi} 2 o
subject to the constraints
Wo = Tj — Tss, Vop = Uj1 — U, Wgt1 = Awy, + Buy, 2z = Cwy, (6.7a)
Umin — Uss < DUp < Umax — Uss, —Dy < Avg <Ay, (67b)
Ymin — Yss < CWr < Ymax — Yss- (6.7C)

If we denote

{wiey1 (%), v (2) }iZo = argmin &(z;),

then the control law is

p(z;) = vg(z;5).

We address the regulation problem in Section 6.3.
Combining the solution of the target tracking problem and the constrained regulator, we define
the MPC algorithm as follows:

1. Obtain an estimate of the state and disturbances = (z;,p,d)
2. Determine the steady-state target => (Yss, Zss, Uss)

3. Solve the regulation problem = v;

4. Let uj = vj + ug

5. Set j + j + 1. Go to step 1.

6.2 Target Calculation

When the number of the inputs equals the number of outputs, the solution to the unconstrained target
problem is obtained using the steady-state gain matrix, assuming such a matrix exists (i.e. the system
has no integrators). However for systems with unequal numbers of inputs and outputs, integrators,
or inequality constraints, the target calculation is formulated as a mathematical program (Muske and
Rawlings 1993, Muske 1997). When there are at least as many inputs as outputs, multiple combinations
of inputs may yield the desired output target at steady state. For such systems, a mathematical program
with a least squares objective is formulated to determine the best combinations of inputs. When the
number of outputs is greater than the number of inputs, situations exist in which no combination of
inputs satisfies the output target at steady state. For such cases, we formulate a mathematical program
that determines the steady-state output yss 7 ¢ that is closest to 7 in a least squares sense.

Instead of solving separate problems to establish the target, we prefer to solve one problem for
both situations. Through the use of an exact penalty (Fletcher 1987), we formulate the target tracking
problem as a single quadratic program that achieves the output target if possible, and relaxes the problem
in a I3 /12 optimal sense if the target is infeasible. We formulate the soft constraint

g—Crxss —p <,
§g—Cxss —p > —1, (68)
n =0,
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by relaxing the constraint C'zss = § using the slack variable 1. By suitably penalizing 1, we guarantee
that the relaxed constraint is binding when it is feasible. We formulate the exact soft constraint by
adding an [ /I3 penalty to the objective function. The I3/l penalty is simply the combination of a
linear penalty ¢Ln and a quadratic penalty n? Qssn, where the elements of gss are strictly non-negative
and g is a symmetric positive definite matrix. By choosing the linear penalty sufficiently large, the soft
constraint is guaranteed to be exact. A lower bound on the elements of g5 to ensure that the original
hard constraints are satisfied by the solution cannot be calculated explicitly without knowing the solution
to the original problem, because the lower bound depends on the optimal Lagrange multipliers for the
original problem. In theory, a conservative state-dependent upper bound for these multipliers may be
obtained by exploiting the Lipschitz continuity of the quadratic program (Hager 1979). However, in
practice, we rarely need to guarantee that the I3 /I3 penalty is exact. Rather, we use approximate values
for gss obtained by computational experience. In terms of constructing an exact penalty, the quadratic
term is superfluous. However, the quadratic term adds an extra degree of freedom for tuning and is
necessary to guarantee uniqueness.
We now formulate the target tracking optimization as the following quadratic program

.1 _ _
min 3 (nTstn + (Uss - U)TRss (Uss - U)) + qg;n (6.9)

TssyUss,T]

subject to the constraints

I-A —-B 0 Tss = Bd
C 0 I Ugs > j—p |, n >0, (6.10a)
¢ 0 I U < y-p
Umin < Dugs < Umax, Ymin < Cxgs + P < Ymax, (610b)

where Rgss and Qgs are assumed to be symmetric positive definite.

Because zss is not explicitly in the objective function, the question arises as to whether the
solution to Equation 6.9 is unique. If the feasible region is non-empty, the solution exists because the
quadratic program is bounded below on the feasible region (Frank and Wolfe 1956). If Qs and Rgs are
symmetric positive definite, 17 and ugs are uniquely determined by the solution of the quadratic program.
However, without a quadratic penalty on zg, there is no guarantee that the resulting solution for x4 is
unique. Non—uniqueness in the steady-state value of zs presents potential problems for the controller,
because the origin of the regulator is not fixed at each sample time. Consider, for example, a tank where
the level is unmeasured (i.e. an unobservable integrator). The steady-state solution is to set ugs = 0 (i.e.
balance the flows). However, any level x4, within bounds, is an optimal alternative. Likewise, at the
next time instant, a different level also would be a suitably optimal steady-state target. The resulting
closed-loop performance for the system could be erratic, because the controller may constantly adjust
the level of the tank, never letting the system settle to a steady state.

In order to avoid such situations, we restrict our discussion to detectable systems, and recommend
redesign if a system does not meet this assumption. For detectable systems, the solution to the quadratic
program is unique assuming the feasible region is nonempty. The details of the proof are given in
Appendix 6.5.1. Uniqueness is also guaranteed when only the integrators are observable. For the
practitioner this condition translates into the requirement that all levels are measured. The reason we
choose the stronger condition of detectability is that if good control is desired, then the unstable modes
of the system should be observable. Detectability is also required to guarantee nominal stability of the
regulator.

Empty feasible regions are a result of the inequality constraints (6.10b). Without the inequality
constraints (6.10b) the feasible region is nonempty, thereby guaranteeing the existence of a feasible and
unique solution under the condition of detectability. For example, the solution (uss,Zss,n) = (—d, 0, |y —
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p|) is feasible. However, the addition of the inequality constraints (6.10b) presents the possibility of
infeasibility. Even with well-defined constraints, Umin < Umax and Ymin < Ymax, disturbances may render
the feasible region empty. Since the constraints on the input usually result from physical limitations such
as valve saturation, relaxing only the output constraints is one possibility to circumvent infeasibilities.
Assuming that un;, < —d < upax, the feasible region is always nonempty. However, we contend that
the output constraints should not be relaxed in the target calculation. Rather, an infeasible solution,
readily determined during the initial phase in the solution of the quadratic program, should be used as
an indicator of a process exception. While relaxing the output constraints in the dynamic regulator is
common practice (Ricker et al. 1988, Genceli and Nikolaou 1993, de Oliveira and Biegler 1994, Zheng and
Morari 1995, Scokaert and Rawlings 1999), the output constraint violations are transient. By relaxing
output constraints in the target calculation on the other hand, the controller seeks a steady-state target
that continuously violates the output constraints. The steady violation indicates that the controller is
unable to compensate adequately for the disturbance and, therefore, should indicate a process exception.

6.3 Receding Horizon Regulator

Because our implementation of dynamic control in the presence of active steady-state constraints employs
an infinite horizon, we first briefly discuss the solution to infinite horizon problems.

6.3.1 Infinite Horizon Optimal Control Problem

Given the calculated steady state we formulate the regulator as the following infinite horizon optimal
control problem

1 oo
min ®(z;) = = Z wi CTQCwy, + vff Ry, + AvgSAuy, (6.11)
{wk,vi} 2 k=0
subject to the constraints
Wo = Tj — Tss, V-1 = Uj—1 — Uss, W41 = Awy, + Buy, (6.123,)
Umin — Uss < DU < Umax — Uss, —Ay <Ay < Au; (6-12b)

¥ = Yss < Cwp < § — Yss. (6.12¢)

We assume that @ and R are symmetric positive definite matrices. We also assume that the origin,(w;,v;) =
(0,0), is an element of the feasible region W x V 2. If the pair (A4, B) is stabilizable, the pair (4, Q'/2C)

is detectable, and a solution exists to (6.11)—(6.12), then x; = 0 is an exponentially stable fixed point of
the closed-loop system (Scokaert and Rawlings 1996).

For unstable state transition matrices, the direct solution of (6.11)—(6.12) is ill-conditioned, be-
cause the system dynamics are propagated through the unstable A matrix. To improve the conditioning
of the optimization, we reparameterize the input as vy, = Lwy,+7r}, where L is a linear stabilizing feedback
gain for (A, B) (Keerthi 1986, Rossiter, Rice and Kouvaritakis 1997). The system model becomes

Wht1 = (A + BL)wk + Bry, (6.13)

where 1 is the new input. By initially specifying a stabilizing, potentially infeasible, trajectory, we can
improve the numerical conditioning of the optimization by propagating the system dynamics through
the stable (A + BL) matrix.

2W = {w‘ Ymin — Yss S Cw S Ymax — yss}; V= {'U| Umin S Dv S Umax, _Au — Uss S Av S Au - uss}
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By expanding Awvj, and substituting in for vy, we transform (6.11)—(6.12) into the following more
tractable form:

o0

{irkl:lilk} ®(z;) = % l;)(w,{ka + v{ Rug + 2wi Muwy,), (6.14)

subject to the following constraints:
Wo = Tj, W1 = Awy, + Bug, (6.15a)
dmin < Dvp — Gy, < diax, Ymin — Yss < Cwg < Ymax — Yss- (6.15b)

The original formulation (6.11)—(6.12) can be recovered from (6.14)—(6.15) by making the following
substitutions into the second formulation:

$j<—[ Tj — Tss :|,wk(_|:wk :|,'uk(—7‘k,A(—|:A+BL 0:|7
Uj—1 — Usgs Vg—1 L 0
B CTQC +LT(R+S)L -L'S LT(R+S)
B(_[I]’Q(_[ _SL s M -8 ’
D —-DL 0
R<—R+S,D<—[I],G<—[_L I]’

dinax [ Unmax = Uss ], Ainin [ Unmin = Uss ], C+[C 0].

Ay Ay
While the formulation (6.14)—(6.15) is theoretically appealing, the solution is intractable in its current
form, because it is necessary to consider an infinite number of decision variables. In order to obtain a
computationally tractable formulation, we reformulate the optimization in a finite dimensional decision
space.

Several authors have considered this problem in various forms. In this chapter, we concentrate
on the constrained linear quadratic methods proposed in the literature (Keerthi 1986, Sznaier and
Damborg 1987, Chmielewski and Manousiouthakis 1996, Scokaert and Rawlings 1996, Scokaert and
Rawlings 1998). The key concept behind these methods is to recognize that the inequality constraints
remain active only for a finite number of sample steps along the prediction horizon. We demonstrate
informally this concept as follows: if we assume that there exists a feasible solution to (6.14), (6.15),
then the state and input trajectories {wg, vy }32, approach the origin exponentially. Furthermore, if we
assume the origin is contained within the interior of the feasible region Wx V (we address the case where
the origin lies on the boundary of the feasible region in the next section), then there exists a positively
invariant convex set (Gilbert and Tan 1991)

O = {w| (A+ BK)'w € Wk, Vj >0} (6.16)

such that the optimal unconstrained feedback law v = Kw is feasible for all future time. The set Wx
is the feasible region projected onto the state space by the linear control K (i.e. Wi = {w|(w, Kw) €
Wx V}). Because the state and input trajectories approach the origin exponentially, there exists a finite
N* such that the state trajectory {w}32 . is contained in Ou.

In order to guarantee that the inequality constraints (6.15b) are satisfied on the infinite horizon,
N* must be chosen such that wn« € Ou. Since the value of N* depends on z;, we need to account
for the variable decision horizon length in the optimization. We formulate the variable horizon length
regulator as the following optimization

N—1

1 1
min _ ®(z;) = = Z (wi Quy, + v Rug + 2wl M) + —whTw,y, (6.17)
{wk,vk,N} 2 k=0 2
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subject to the constraints

wo = xj, W41 = Awy, + Bug, (6.18a)
dmin < Dvg — Gwg < dmax, Ymin — Yss < CWr < Ymax — Yss, (6'18b)
WN € Oco. (6.18¢)

The cost to go II is determined from the discrete-time algebraic Riccati equation
IM=ATTIA + Q — (ATTIB + M)(R+ BTTIB)"Y(BTTIA + MT), (6.19)

for which many reliable solution algorithms exist. The variable horizon formulation is similar to the
dual-mode receding horizon controller (Michalska and Mayne 1993) for nonlinear system with the linear
quadratic regulator chosen as the stabilizing linear controller.

While the problem (6.17)—(6.18) is formulated on a finite horizon, the solution cannot, in general,
be obtained in real-time since the problem is a mixed-integer program. Rather than try to solve directly
(6.17)—(6.18), we address the problem of determining N* from a variety of semi-implicit schemes while
maintaining the quadratic programming structure in the subsequent optimizations.

Gilbert and Tan (1991) show that there exist a finite number ¢* such that Oy« is equivalent to
the maximal O, where

Oy = {w| (A+ BK)'w e Wg, forj=0,...,t}. (6.20)

They also present an algorithm for determining ¢* that is formulated efficiently as a finite number of
linear programs. Their method provides an easy check whether, for a fixed N, the solution to (6.17)—
(6.18) is feasible (i.e. wny € O ). The check consists of determining whether state and input trajectories
generated by unconstrained control law v, = Kwy, from the initial condition wy are feasible with respect
to inequality constraints for ¢* time steps in the future. If the check fails, then the optimization (6.17)—
(6.18) needs to be resolved with a longer control horizon N’ > N since wy ¢ Ox. The process is
repeated until wy: € O

When the set of initial conditions {wo} is compact, Chmielewski and Manousiouthakis (1996)
present a method for calculating an upper bound N on N* using bounding arguments on the optimal
cost function ®*. Given a set P = {z!,... 2™} of initial conditions, the optimal cost function ®*(z) is
a convex function defined on the convex hull (co) of P. An upper bound ®(z) on the optimal cost ®*(z)
for z € co(PP) is obtained by the corresponding convex combinations of optimal cost functions ®*(z7) for
z € P. The upper bound on N* is obtained by recognizing that the state trajectory w; only remains
outside of Oy, for a finite number of stages. A lower bound ¢ on the cost of w]Tij can be generated
for z; ¢ Ou (see (Chmielewski and Manousiouthakis 1996) for explicit details). It then follows that
N* < ®(z)/q. Further refinement of the upper bound can be obtained by including the terminal stage
penalty II in the analysis.

When a bound on the initial conditions wg is known a priori, calculating an upper bound N
is appealing, because one need not iteratively determine N* online. However, generating this bound
a priori requires significant process knowledge. Changing operating conditions and disturbances may
lead to initial conditions that violate any previously specified bound. In such cases, we again need to
determine N* online. Furthermore, the decision of how to construct the basis for P is complicated, since
the number of points increases exponentially in higher dimensions. Even when a bound is available and
a logical basis is constructed, the upper bounds are often conservative, as demonstrated in the following
example.

Example 6.3.1 Comparison of online and offline determination of N*
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Consider the regulation of the following double integrator system

.2'1'1 = x2, (621&)
iy = u, (6.21D)

sampled at a frequency of 10 Hertz with y = z; and the input constraint |u| < 1. For @ =1, R =1,
T

S = 0, and the initial condition zy = [ 11 ] . For this initial condition, N* = 13 was required to

guarantee that the constraints are satisfied on the infinite horizon.

The Chmielewski and Manousiouthakis method generates a least upper bound of 361 for N*.
This value was determined using the true infinite horizon cost for z¢y = [ 11 ]T. In practice, only
an upper bound on the cost is available for the infinite horizon cost, so the upper bound on N* is
often greater than the least upper bound for N*. We can compare these results with the repetitive
strategy where N is increased until wy € Oy. Since there exist algorithms whose computational cost
is O(N) (Rao, Wright and Rawlings 1998), we can expect that the computational cost is approximately
a linear function of N. If N = 1 initially and the control horizon is increased by unit steps, then the
total computational cost is approximately 91 x C, where C' is the computational cost required solve the
optimization for N = 1. If we increase the horizon geometrically with a factor of 2 as advocated by
Scokaert and Rawlings (1998), then the total computational cost is approximately 31 x C. In practice,
larger initial values of NV are used. A good heuristic is to choose initially N = ¢t*. For this example,
t* = 15. As the example demonstrates, the online determination is significantly less computationally
expensive than the offline determination. Furthermore, for the online determination, we can bound the
computational cost by 4N* x C, for this example 52 x (', when we increase the horizon geometrically
with a factor of 2 (Scokaert and Rawlings 1998). With the offline determination, we have no bounds
on the computational cost (other than it is finite), and, as the example demonstrates, a computational
effort an order of magnitude greater than required is possible. Therefore, we suggest the use of the
iterative, online determination for N*. <o

6.3.2 Feasibility and Soft Constraints

In the formulation of the MPC problem, some state constraints are imposed by physical limitations such
as valve saturation. Other constraints are less important; they may represent desired ranges of operation
for the plant, for instance. In some situations, no set of inputs and states for the MPC problem may
satisfy all of these constraints. Rather than having the algorithm declare infeasibility and return without
a result, we prefer a solution that enforces some constraints strictly (“hard constraints”), while relaxing
others and replacing them with penalties on their violation (“soft constraints”). This problem has
been discussed by numerous authors (Ricker et al. 1988, Genceli and Nikolaou 1993, de Oliveira and
Biegler 1994, Zheng and Morari 1995, Scokaert and Rawlings 1999),

Scokaert and Rawlings (1999) replace the soft constraints with penalty terms in the objective
that are a combination of ¢; norms and squared £; norms of the constraint violations. Assuming for
simplicity that all state constraints Ymin — yss < CZr < Ymax — Uss in (6.18b) are softened in this way,
we obtain the following modification to the objective (6.17):

1 _
Z (T Qxy, + ul Ruy, + 227 Muy, + €F Zey,) + 2T ex + iazﬁPa:N, (6.22)
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where the constraint violations € are defined by the following formulae (which replace ymin — ¥ss <
Czy, < Ymax — yss):

Cxp, — € < Ymax — Yss» (6-233)
ka + €k Z Ymin — Yss, (623b)
€ >0 (6.23¢)

and the elements of the vector z are nonnegative, while Z is an symmetric positive semi-definite matrix.
It is known that when the weighting z on the ¢; terms is sufficiently large (see, for example, Section
12.3 in Fletcher (1987)), and when the original problem (6.17)-(6.18) has a nonempty feasible region,
then local minimizers of problem (6.17)-(6.18) modified by (6.22)-(6.23) defined above correspond to
local solutions of the unmodified problem (6.17)- (6.18). Under these conditions, (6.22) together with
the constraints (6.23) is referred to as an exact penalty formulation of the original objective (6.17) with
the original constraints ymin — yYss < Cr < Ymax — Yss- 1Lhis formulation has the advantage that it can
still yield a solution when the original problem (6.17)-(6.18) is infeasible.

Prior to actually solving the problem, we cannot know how large the elements of z must be chosen
to make the exact penalty property hold. (The threshold value depends on the optimal multipliers for the
original problem (6.17)-(6.18).) A conservative state-dependent upper bound for these multipliers can
be obtained by exploiting the Lipschitz continuity of the quadratic program (Hager 1979). In practice,
however, the exact penalty is not critical, since by definition soft constraints need not be satisfied exactly.
Reasonable controller performance can often be achieved by setting z = 0 and choosing Z to be a positive
diagonal matrix. In fact, the inclusion of the £ term €} Zey, is not needed at all for the exact penalty
property to hold, but is included here to provide a little more flexibility in the modeling.

6.3.3 Boundary Solutions and Suboptimal Approximations

All papers on constrained linear MPC include the assumption that the origin lies in the interior of
the feasible region (Keerthi and Gilbert 1988, Sznaier and Damborg 1987, Rawlings and Muske 1993,
Chmielewski and Manousiouthakis 1996, Scokaert and Rawlings 1996). However, as Section 6.2 indicates,
this assumption is often violated. In practice, one often encounters situations in which a valve saturates
or a control variable rides at a performance constraint during steady-state operation. In these situations,
the origin is on the boundary of the feasible region. Table 6.1 lists all of the examples that are discussed
in the chapter and summarizes the main points illustrated with each example. Consider the following
example.

Example 6.3.2 Saturating inputs at steady state

Prett and Morari (1987) presented the following model

4.05¢727*  1.77¢728  5.88e7%7°

50s+1 605+1 50s+1
G(s) = 5.39e"18  5.72¢~!%°  §.90e~15° (6.24)
50s+1 605+1 40s+1
4.38¢7%0°  4.42¢7%%° 7.20
335+1 445+1 19s+1

for a heavy oil fractionator as the benchmark process for the Shell standard control problem. The three
inputs of the process represent the product draw rate from the top of the column (u;), the product draw
rate from the side of the column (uz), and the reflux heat duty for the bottom of the column (us). The
three outputs of the process represent the draw composition (y;) from the top of the column, the draw
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| Example | Description

1 A comparison of methods for calculating N*
in solving infinite horizon problems
2 Steady-state inputs on boundary for Shell problem
3 Steady-state outputs on boundary for Furnace problem
4 Example of system whose input never settles on constraint
or remains in interior of feasible region
5 Simple numerical example of input constrained regulator
5 Dynamic response of Shell problem subject to setpoint change
6 Dynamic response of Shell problem subject to disturbance
7 Example of output constrained regulator:
endpoint constraint necessary
8 Example of output constrained regulator: boundary solution

Table 6.1: Brief Synopsis of Examples

composition (y2) from the side of the column, and the reflux temperature at the bottom of the column
(y3). Prett and Garcia also present the following disturbance model

1.20e~27  1.44¢7%7¢

15511 10511
— | 1.52e75%  1.83e'5 2
Ga(s) 2551 2051 (6.25)
1.14 1.26
27541 32541

for the heavy oil fractionator. The two disturbances are the reflux heat duty for the intermediate section
of the column (d;) and the reflux heat duty for the top of the column (dz). Both models were sampled
with a period of 4 minutes.

The inputs are constrained between —0.5 and 0.5. An input velocity constraint of 0.20 is also
imposed. In addition to constraints on the inputs, the outputs are constrained between —0.5 and 0.5.
The following tuning parameters were chosen: Q(Qss) = I and R(Rgs) = I.

Since the origin is shifted by the steady-state target calculation, output target changes and
measured disturbances may force the origin to lie on the boundary of the feasible region. An example
of an output target change that causes the inputs to saturate at steady state is

0.3 0.5 0.3
j= 0.3 = Uy = 0.1 |, yss = 0.3 . (6.26)
—-0.3 —0.26 —-0.15

Note that since the input (u;) saturates, the system is unable to attain the desired target (i.e. ¥ # yss)-
Figure 6.1 illustrates how the input constraints constrain the attainable region of the output space.
Likewise, an example of a step disturbance, dstep, that causes the inputs to saturate at steady state is

-0.5
dstep = [ g'g ] = ugs = | 0.04 |. (6.27)
' 0.09

Steady-state outputs at performance constraints are a consequence of choosing an output target at £0.5
or choosing an infeasible target. <

Example 6.3.3 Constrained outputs at steady state
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Figure 6.1: The limiting effect of the input constraints on the ability to attain the desired output target
for Example 6.3.2. The vector ugs denotes the unconstrained input required to achieve the target y.
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Figure 6.2: Preheater furnace

Consider the control of a furnace depicted in Figure 6.2, where the objective is to preheat the feed to
a desired output temperature. The input variable is the fuel gas flowrate. In addition to the input
constraint caused by valve saturation, there is a maximum limit for the furnace temperature in order
to prevent the furnace tubes from melting. While temporary violations of the constraint are tolerable,
long term violations are not. If we assume that the heating tube temperature and the heat transfer are
linear functions of the fuel gas flowrate, then a simplified, steady-state energy balance neglecting heat
loss yields the following dimensionless model for the furnace system

Y1 = au, (6.28a)
Yo = Bu +d, (6.28b)

in which y; is the heating tube temperature, y» is the outlet temperature, d is the inlet temperature,
and u is the fuel gas flowrate. For simplicity we scale the variable such that a = = 1. Assume nominal
conditions are u = 8, d = 5, and § = [ 8 13 ]T and the maximum limit for the furnace temperature
is y1 < 10. Suppose that there is an upstream disturbance that causes the inlet temperature to drop to
d = 2. To compensate for the disturbance, the fuel gas flow rate would have to increase to 11 for the
output temperature (y2) to remain at its target. However, the furnace temperature constraint would
allow the flowrate to increase only to 10. The resulting steady-state output obtained with Qss = 1,
Rss =1, ¢ss = 100, and 4 = 0'is ygs = [ 10 12 ]T, which lies on the boundary of the feasible region.
Figure 6.3 depicts the effect of the disturbance on the attainable region of the output space. <
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Figure 6.3: The inability of the outlet temperature to reach the desired steady-state target due to the
tube temperature constraint in Example 6.3.3.

These situations complicate the formulation of the infinite horizon optimization, because O,
does not exist for all such systems controlled with the unconstrained optimal feedback regulator. Fig-
ure 6.4 displays some of the potential input and state trajectory characteristics that are possible when
the origin lies on the boundary of the feasible region.

An example of a system that displays the first characteristic is a stable first order system with
initial conditions in the interior of the feasible region. An example of a system displaying the second
characteristic is given in the following example.

Example 6.3.4 A system where the control does not become permanently active or inactive on the
constraint

Consider the following system

0.5477 0.8208 O 0

Wepr = | —0.8208 0.5067 0 |we,+ | 0 | vk (6.292)
0 0 0.8 1

ye=[1 0 1 ]uy, (6.29b)

subject to the input constraint vy < 0. Figure 6.5 details the optimal input profile subject to the initial
disturbance wg = [ 330 ]T with tuning parameters () = 1 and R = 1. While the input trajectory
converges towards the origin (see Figure 6.5), numerical calculations indicate that the input does not
become active on the constraint or stay strictly in the interior of the feasible region. <

Examples of systems displaying the third characteristic are given in Examples 6.3.7 and 6.3.8.
While the first trajectory offers the possibility of constructing O, for the second and third trajectory
we are unable to construct Oy with a finite number of inequality constraints, because the constraints
remains active for infinite time. Each of the possibilities could be handled individually. However, the task
of segregating their behavior a priori is difficult. To circumvent this problem, we approximate (6.17)-
(6.18) by restricting the evolution of the input and state trajectories generated by the linear control
law to the null space of the active constraints at the origin. This suboptimal strategy coincides with
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Figure 6.4: Some potential input and state trajectories when the origin is on the boundary of the
feasible region. To prevent problems associated with trajectories 1 and 2, the proposed algorithm forces
the closed-loop response to adhere to a trajectory similar to 3.
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Figure 6.5: Input Trajectory for Example 6.3.4

forcing the state and input trajectories to adhere to the third path depicted in Figure 6.4. By forcing
the trajectory of system onto the constraints active at the origin, we guarantee the existence of an O,
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because the invariant set needs to account only for the constraints inactive at the origin. The constraints
active at the origin are feasible by construction.

We accomplish the boundary approximation by constructing the optimal linear feedback law K
that constrains evolution of the closed-loop system to constraints active at the origin. The set O, is
constructed as before with the following differences: the new linear control law is K and the inequality
constraints active at the origin are discarded. The infinite horizon regulator is constructed as the solution
of (6.17)—(6.18) with the new O, and the cost to go IT associated with K. We treat the situation of
input and state constraints separately.

Active Input Constraints We recast the problem for handling input constraints active at the origin
as finding the linear feedback controller that minimizes the infinite horizon quadratic objective (6.14)
subject to the equality constraints 3

Wr41 = Awy, + Bug, (6.30&)
Dug =0, (6.30b)

where the over-bar denotes the subset of the inequality constraints, dmin < Dvg < dmax, that are active
at the origin. The matrix D € R"5*™ where np is equal to the number of inputs with constraints
active at the origin. The state dependence of the input constraints due to (6.13) can be reformulated
solely in terms of the input vy by removing the parameterization vy = Lwy, + 11, for k > N. We derive
the linear optimal controller as follows. We first define the operator

K:(AB,Q,R,M)— (K,II), (6.31)

where K is the linear gain for the optimal unconstrained regulator and II is the solution to the associated
Riccati equation. If we let N5 be an orthonormal basis for the null space of D, then ka =N gvk
represents the input projected to the null space Np. Because the equality constraint is feasible for all
ka , we can substitute for vy in the state equation and the objective function yielding the following
expression

(KDaf[) :IC(A7BND7QJN5RND7MND) (632)
for the solution of the constrained feedback law. If (A, BAp) is stabilizable, then
= A
K = NpKp. (6.33)

If (A, BN ) is not stabilizable, we need to zero the modes of the system that are both uncontrollable and
unstable at £ = N* in order to guarantee nominal stability. By first performing a Kalman decomposition
to construct a basis for the uncontrollable subspace, a basis for the corresponding uncontrollable and
unstable modes is constructed using either a Jordan or Schur decomposition. We remark that if D is
full rank, then it is necessary to zero the inputs at the end of the control horizon. The regulator then
reduces to the one discussed by Rawlings and Muske (1993). In the following two examples we show
the closed-loop response of the heavy oil fractionator with the output target change and disturbance
described in Example 6.3.2.

Example 6.3.5 Heavy oil fractionator: closed-loop response subject to output target change

Consider the closed-loop response of the heavy oil fractionator described in Example 6.3.2 subject to
the output target change described in (6.26). Figure 6.6 shows the closed-loop response subject to the

3We do not need to account for G because the velocity constraints are not active at steady state.
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output target change. As discussed in Example 6.3.2, the input constraints prevent the system from
attaining the desired target y at steady state. Instead the controller seeks a target that causes the top
draw (u1) to saturate at its upper limit. Figure 6.6 shows that, after initially saturating, the top draw
asymptotically approaches its upper limit as the closed-loop system settles at its specified steady-state
values. While the open-loop trajectory of the controller specifies that the top draw saturates at k = N*,
the receding horizon aspect of the regulator allows for an asymptotic approach. This feedback effect
diminishes the performance degradation due to the boundary projection in the actual closed-loop. <

-0.2

02 |

-0.4

Figure 6.6: Closed-loop Response for Example 6.3.5

Example 6.3.6 Heavy oil fractionator: closed-loop response subject to a disturbance

Consider the closed-loop response of the heavy oil fractionator described in Example 6.3.2 subject to the
disturbance described in (6.27). An output disturbance model was used to detect the disturbance (Muske
and Rawlings 1993). Figure 6.7 displays the closed-loop response subject to the disturbance. To reject
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the disturbance, the controller seeks an input target that causes the top draw (u1) to saturate at its
lower limit. Once again, Figure 6.7 shows that the top draw asymptotically approaches its lower limit
as the closed-loop system settles at its specified steady state. In addition, the disturbance causes the
output constraints to become infeasible. In order to handle the output infeasibilities in the regulator,
the constraints were relaxed using a I; /I exact penalty in the manner described by Scokaert and Rawl-
ings (1996). The output constraints were relaxed with an I; penalty of 2 = 1000 * e and a /2 penalty of
Z =1, wheree=1[1...1]T. <o

Figure 6.7: Closed-loop Response for Example 6.3.6

Active State Constraints In an analogous manner, the problem of handling state constraints can
be reformulated as finding the linear feedback controller that minimizes the infinite horizon quadratic
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objective (6.14) subject to the constraints

Wry1 = Awy + By, (634&)
Cwy = 0. (6.34b)
Unlike the previous situation, there does not always exist a linear feedback regulator that satisfies the
state constraints for all k. For such a regulator to exist, we require that the null space of C is (4, B)
invariant. The definition of (A4, B) invariance along with the sufficient conditions for the existence of a
regulator is given in Appendix 6.5.2. The condition of (A4, B) invariance essentially requires that there
are enough degrees of freedom in the input to constrain the evolution of the system to a particular
subspace. A system whose uncontrollable modes are observable in the null space of C is not (A4, B)
invariant if the associated basis for the uncontrollable modes is not contained completely in the null
space of C. Assuming that the null space of C is (A, B) invariant, then there exists a linear feedback
law

Vv = Léwk +NB(7pg (635)

that constrains the system to the null-space of C for all p,?. The details of the construction are given in
Appendix 6.5.2. We obtain the optimal feedback law from the following expression

(Ko, M) = K((A+BLg),BNgy, Q+ LERL +2MLg,
NEgRNep, MNgp + LERNG ) (6.36)

by substituting in for v with the feedback law (6.35). If ((A + BLs, BNcp) is stabilizable, then
K & NopKe. (6.37)

Otherwise it is necessary to zero the unstable and uncontrollable modes at ¥ = N* in an analogous
manner to the input constrained regulator. The boundary approximation to (6.17)—(6.18) is obtained
by adding the constraint

Cuwy =0, (6.38)

and calculating IT using (6.36). In the following two examples, we illustrate that a system must possess
excess degrees of freedom in the input for a stabilizing boundary approximation.

Example 6.3.7 Output constrained regulator with no excess degrees of freedom

Consider the regulation of the following non-minimum phase system

(s)_ﬁu
y T 352445+ 2

sampled at a frequency of 10 Hertz subject to the constraint y; > 0 and the tuning parameters @ = 1
and R = 1. One state space realization for this system in discrete time is:

(s) (6.39)

0.9968  0.0935 0.0048
4= 00623 08721 ] » B= [ 0.0935 ] ’ (6.40a)
C =] —-1.0000 0.3333 ]. (6.40Db)

The system is (A4, B) invariant with respect to the null space of C. However, the closed-loop system
with the invariant feedback law

Kg = 38.5608 —7.4723 | (6.41)
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is unstable. Since there are no additional degrees of freedom, it is necessary to enforce the endpoint
constraint wy = 0 for the boundary approximation. Figure 6.8 shows a comparison of the closed-loop
response for the constrained regulator with N = 10 and the unconstrained regulator with an initial
state disturbance of [—1,2]7. While the output response for the constrained regulator displayed in
Figure 6.8 appears better than the unconstrained output response, notice that the input action is far
more aggressive for the constrained regulator. <

0.2

constrained ——

3 .
0 5 10 15 20 25 30 35 40 45 50
j
constrained ———
unconstrained ——— .
>\ .

0 5 10 15 20 25 30 35 40 45 50
j

Figure 6.8: Comparison of Closed-loop Responses for Example 6.3.7

Example 6.3.8 Output constrained regulator with excess degrees of freedom

Reconsider the regulation of the system in Example 6.3.7 with an additional input

___ 573 u(s)+72 u
T 3s2+4s+2 " 352 +4s5+2 °

y(s) (s) (6.42)
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sampled at a frequency of 10 Hertz subject to the constraints |ux| < 6 and yr > 0 and the tuning
parameters Q =1 and R = 1.
One state space realization for this system in discrete time is:

| 0.8877 —0.0346 B— —0.0827 0.0395
- [ 01194 0.9812 |’ | 0.0212 0.0026 |’

C=[0 12472 ].

The system is again (A, B) invariant with respect to the null space of C. In contrast, with the addition
of the extra degree of freedom, the closed-loop system with the invariant feedback law

—5.54 —45.5972
5.5486 5.597 ] (6.43)

Kq =
c [—0.6805 —5.5921

is stabilizable. Figure 6.9 shows a comparison of the closed-loop responses for the constrained regulator
with N = 9 and the unconstrained regulator subject to the initial condition is zo = [1, —3]%. Figure 6.10
shows the phase portraits of the closed-loop responses for the constrained and unconstrained regulator.
Once again the output response for the constrained regulator appears superior to the unconstrained
output response. Notice, however, that the input is far more aggressive for the constrained regulator.$

The combined problem of both state and input constraints is solved by reconsidering (6.36) after
making the following substitutions:

B+ BNp, R+ NLRNp, M+ MNp. (6.44)

It is not difficult to prove the proposed control algorithm is asymptotically stable. Convergence of
the regulator is straightforward to demonstrate using standard arguments (for example, see (Keerthi and
Gilbert 1988)). Establishing nominal stability is more subtle than the usual arguments. In particular,
the definition of stability needs to be adjusted to account for perturbations only in the feasible region.

6.4 Concluding Remarks

The main contribution of this chapter has been to establish techniques for handling inequality constraints
active at steady state, a case that has not been treated in previous model predictive control (MPC)
theory. Through a series of examples, we show how this case is significant in applications.

As an alternative to the approach outlined in this chapter, one could consider moving any
inequality constraint line that passes through the origin a small distance away from the origin, after
which existing theory would apply. Choosing this distance is problematic, however. If a small distance
is chosen, the output admissible set may be small, and the required horizon may be large and the on-line
computation is inefficient. If a somewhat larger distance is chosen, the economic performance of the
plant suffers because the steady-state target is no longer close to the true plant constraints. Of course,
one could always avoid the issue by using a finite horizon and terminal constraint, but that choice is not
as good as the approach outlined here.
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Figure 6.9: Comparison of Closed-loop Responses for Example 6.3.8
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]
constrained —+— 7
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Figure 6.10: Closed-loop Phase Portraits for Example 6.3.8. The initial condition is zo = [1, —3]7.
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6.5 Appendix

6.5.1 Proof of Uniqueness for Target Calculation

Without loss of generality, we ignore the inequality constraints on the decision variables and consider
only the constraints given by (6.10a).

Theorem 6.5.1 If Qg, Rss > 0, gss > 0, and (A, C) is detectable, then the solution to (6.9) subject to
the constraints given by (6.10a) is unique.

Proof. Using the Hautus lemma (Sontag 1990), detectability implies the following rank condition

Al —A
rank [ H 2 C =n (6.45)
C

for all A € C with magnitude greater than or equal to 1. It is sufficient to consider only the extended
Hautus matrix, H, with A = 1. Since rank H = n, H has full column rank. It then follows that xg is
uniquely determined from the following equation

B(ugs + d)
Hrgs = | y—p— (77 - tl) (6'46)
g—p+(n—t2)

where t; and ty are positive slacks for the inequality constraints (6.10a). If Zss # ss is another solution,
then there necessarily exists another solution (@ss, 7 — t{1,2}) # (uss,” — t{1,2}). Since the positive slack
accounts for 9 = |j — Cxss — p|, 7 is uniquely determined by (1 — t{1,2). However, since the objective
function is a strictly convex function of uss and 7), Tss cannot be another solution without contradicting
optimality. d

Remark 6.5.2 An additional consequence of a unique target is that the target calculation is stable to
perturbations. Since the quadratic program is continuous in a point-to-set topology, uniqueness of the
target guarantees that the solution is continuous in a point-to-point topology (Berge 1963).

6.5.2 State Constrained Linear Quadratic Regulator

In this section, we describe sufficient conditions for the construction of a state constrained linear feedback
controller. The key concept is (4, B) invariance with respect to the null space of C. For further details
of (A, B) invariance with respect to an arbitrary subspace, see Section 4.3 of (Sontag 1990).

Definition 6.5.3 The null space of C is (A, B) invariant if and only if Vw, Jv such that Cw = 0 implies

C(Aw + Bv) =0.

Theorem 6.5.4 The null space of C is (A, B) invariant if and only if there exists a linear feedback
control law that constrains the evolution of (A, B) to the subspace Cw = 0.

The sufficiency is immediate (Sontag 1990). Before proving necessity of Theorem 6.5.4, we first
derive necessary and sufficient conditions for the null space of C to be (A4, B) invariant. Let Nz be an
orthonormal basis for the null-space of C and let { = =N/ CT w. We recast the constraints (6.34) as

CANz¢ = CBu. (6.47)

Let R(.y denote the range space of (-).
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Lemma 6.5.5 The null space of C is (A, B) invariant if and only if Rean, €S Rep-

Proof.  Suppose first that Roan, € Reop- It follows directly that V¢, Jv such that CANs¢ = CBw
since the column space of BC contains the columns space of CANs. Hence, C is (A, B) invariant as
claimed.

Now suppose that the null space of C' is (4, B) invariant. Then V¢, 3v such that CANz( = CBv.
Therefore, by definition, Roan;,, € Rep as claimed. O

Let O4 and Op denote the orthonormal bases for the columns spaces of CAN and CB respec-
tively.

Corollary 6.5.6 The null space of C is (A, B) invariant if and only if (OgO%L —I)0O4 = 0.

Proof. An equivalent condition for R4 Ny CRep is that V(, Jv such that O4( = Opwv. Solving for v
yields v = 050 4(. Direct substitution yields the desired result. d

Proof. [Theorem 6.5.4] We construct a feedback law that constrains w to the null-space of C by decompos-
ing the operator C'B into its range space and null spaces yielding v = —(CB)*CAw + N Bpé where pé
is the input projected to the null space of C'B and (-)* denotes the pseudo-inverse. If Ke 2 —(CB)TCA,
then we construct the linear feedback law v = Kw + Nggp© as claimed. O

Remark 6.5.7 The vector pé represents the excess degrees of freedom in the inputs with respect to the
constraint Cw = 0. Since the control law constrains the system to the subspace Cw = 0 for all pé, we
construct the optimal state constrained regulator by first constructing a linear quadratic regulator, K,
for the system (A+ BK s, BNgg). The full state constrained regulator is obtained by combining the two
linear regulators as follows

v = (K(—;—}-N@BK)HJ. (6.48)



130



131

Chapter 7

Linear Programming and Model
Predictive Control !

7.1 Introduction

Traditionally model predictive control has been formulated using a quadratic criterion. Part of the
popularity of the quadratic criterion from a theoretical standpoint is due to its mathematical convenience.
From a numerical standpoint, the quadratic criterion is popular, because the resulting optimization can
be cast as a quadratic program. For the unconstrained case, the linear quadratic optimal control problem
is solved efficiently using dynamic programming. This solution technique has the desirable property that
the computational cost scales linearly in the horizon length N as opposed to cubically for the general least
squares solution. While the addition of constraints negates the possibility of a general analytic solution
to the optimal control problem, the quadratic program may be structured in an analogous manner to the
unconstrained problem, yielding linear growth in the horizon length N. Approaches to structuring the
optimal control problem with a linear quadratic objective utilizing sparse matrix methods are available
in the literature (Wright 1993, Biegler 1997, Rao et al. 1998). See Chapter 8 for a discussion of sparse
matrix methods.

Recently Dave, Willig, Kudva, Pekny and Doyle (1997) have advocated the use of an [; /Il
norm as a performance criterion for MPC. One motivation is that it allows us to formulate the optimal
control problem as a linear problem. Obtaining solutions to linear program is less computationally
demanding than obtaining a solution to a quadratic program of the same size and complexity, so it
may be preferable to formulate MPC as a linear program. The concept of using linear programming
is not new and has been considered by many authors in optimal control (e.g. (Zadeh and Whalen
1962, Outraka 1976)) and in MPC (e.g. (Propoi 1963, Chang and Seborg 1983, Morshedi, Cutler and
Skrovanek 1985, Keerthi and Gilbert 1986, Campo and Morari 1986, Campo and Morari 1987, Campo
and Morari 1989, Allwright and Papavasiliou 1992, Genceli and Nikolaou 1993)). A review of some
MPC research with non-quadratic objectives can be found in the paper by Garcia, Prett and Morari
(1989). The main theoretical objection to linear programming formulations is that analytic solutions
are generally unavailable due to the nonsmoothness of the objective function. The nonsmoothness is
one of the prime reasons why stability analysis for linear programming formulations has been lacking.
Notable exceptions include the works of Keerthi and Gilbert (1988), who use an endpoint constraint,
Genceli and Nikolaou (1993), who consider finite impulse response models, and Shamma and Xiong
(1997), who provide a numerical test whether a given horizon is sufficiently long to guarantee stability
for unconstrained MPC.

In this chapter we examine linear programming formulations of MPC. We begin our discussion by

!Portions of the chapter were published in Rao and Rawlings (1998b) and Rao and Rawlings (2000)
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presenting in Section 7.2 a stabilizing formulation of MPC with a general [, criterion. In Section 7.3 we
analyze the qualitative properties of MPC with an [; criterion. Unlike MPC with a quadratic criterion,
the choice of the tuning parameters for the /; formulation may result in appreciably different closed-loop
performance. In particular, we demonstrate how the nonsmoothness of the objective may yield either
dead-beat or idle control performance.

7.2 Stabilizing MPC with [, Criterion

Consider the regulation following linear discrete-time representation of the plant

Try1 = Az, + Bug, k>0, (7.1&)
yp = Cumy (7.1b)

where z € R”, up, € R™, and y, € R?. We formulate the regulator as the feedback law n(&;) that

generates the sequence {uy}52 ,, where 1(Z;) £ o, that minimizes the infinite horizon objective function

®(#r) = ) [1Rurlly + 11Qyxllp, (7.2)
k=0

subject to (7.1), the initial condition zg = &;, and the constraints

Umin < Dup < Umax, (733)
Ymin < Yk < Ymax; (7.3c)

where

n 1/p
llzllp := (Z EXR |”>
i=1

and () denotes the it" entry of the vector . Common examples of I, norms are the sum norm (I;
norm)

Izl 2 ]2®] + ...+ |2™)
and the max norm (I norm)
z]loe £ max{leD],...,|z™]}.

The vector £; denotes the current state estimate of the plant at time index j. By suitably adjusting
the origin, the regulator can account for target tracking and disturbance rejection (Muske and Rawlings
1993). We make the following assumptions: a) (A, B) is stabilizable and (C, A) is detectable; b) Q and
R are diagonal matrices with positive elements; and c) the origin (uy,z;) = 0 is contained within the
interior of the feasible region (7.3). If a feasible solution exists, then the origin is an asymptotically
stable fixed point for the feedback controller (Keerthi and Gilbert 1988).

With the notable exceptions discussed in Section 7.3, analytic solutions to (7.2) are generally un-
available, because the [, norm has a kink at the origin (see Figure 7.1). To circumvent the computational
barrier imposed by the infinite horizon calculation, we employ a stable finite horizon approximation. Our
method is analogous to the technique employed by Rawlings and Muske (1993) for a quadratic criterion.
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The basic strategy is to consider only a finite number of decision variables, so that the infinite horizon
problem reduces to a a finite-dimension mathematical program.

We transform the infinite horizon problem to a finite horizon problem with a terminal state
penalty by considering the free evolution of only the stable modes on the infinite horizon. We obtain
the transformation using the following terminal penalty

oo
V(z) =) QCALa]l,,
k=0
where A, is the restriction of A to the stable subspace of A. For the majority of systems an analytic
expression for V(z) is unavailable. One simple strategy to generate a stable approximation for V (z)
is to assume that the nonzero eigenvalues of A, are nondefective. This assumption allows us to upper
bound the sum with a Lyapunov function. Consider the Jordan decomposition

. [A 0 i
AS‘S[O Jno(O)]S !

where the diagonal matrix A contains the nonzero eigenvalues of A, and ng is the algebraic multiplicity
of the zero eigenvalue. Because the Jordan block J,,,(0) is nilpotent, we have

o= [seosl[hy o] S ] (7.4a)
= SAA"(S )4, (7.4b)

for all n > ng. If we consider the coordinate transformation z = (S~!)sz, we generate the following
upper bound

no—1

V(z) = Z lQCA*z||, + 67z,

k=0
where |z| is a vector whose entries are the absolute value of the associated entries of z and
oo
0D = > IQCSaA"ejlly,
k:no

where the vector e; is the unit vector whose j*" entry is 1. The validity of this bound follows directly
from the subadditivity of norms:

> llRC Ak, =
k:’no
Y 1QCSAA (S azll, =
k=ng

3 IQCSAA Wy + ...+ 2 ey,
k:’no

oo n—ng

<3 Y 129 1QCSaA el = 67z

k=ngo j:l

Lemma 7.2.1 V(z) > ||QCxz||, + V (4;z).
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Proof. If follows from (7.4a) that (S~!)p Asz = Az. Hence, we have

V(Asz) - V(z) =
1QCSAA™ 2|l + 6T Az — (1QCz|l, + 67 |2]) .

Expanding 67|z|, we generate the follow inequality.

n—no
01z = D || 1QCSAAGe;l +
j=1
27] D |QCSAA* Aej,
k=’no
> [|QCSAA™2||, +
oo n—ng
>0 > [AUZD]|QCSaA e,
k=no j=1
= [|QCSaAA™z||, + 67 |Az|.
Hence the lemma follows. O

We formulate the finite-horizon regulator as the solution to

PN (8k) =
N-1 _ _
Inin > 1 Ruglly + |Quelly + V(zn), (7.5)
" k=0

subject to (7.1), the initial condition zo = Z;, (7.3), and
Flen =0, (7.6)

where the columns of F' span the orthogonal complement of the stable subspace of A. An ordered
Schur decomposition of A yields an orthogonal representation of F. In the absence of the constraints
(7.3), choosing N > n is sufficient to guarantee feasibility. With the presence of inequality constraints,
feasibility is obtained for stable systems if N is sufficiently large such that

TN € Ooo; (77)

where the set O is positive invariant and contained within the feasible region specified by (7.3). Details
concerning the properties and construction of Oy, are available in (Gilbert and Tan 1991). For unstable
systems, we also require that the state £; is contained in the set of constrained stabilizable states and
N is sufficiently large such that (7.6) is feasible.

Proposition 7.2.2 If o feasible solution exists, then the origin is an asymptotically stable fized point
for the closed-loop system.

Proof. Stability follows from the continuity of ®%;(-). To demonstrate convergence, let

{uk|k:--- auk—i-N—l\k}

denote the minimizing sequence at time index k. Since the sequence

{Wkt1iks - -+ > Uk |k, 0}
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is also admissible at time k£ + 1, we have from Lemma 7.2.1 that

SN (2k) — PN (Tpy1ik) 2
(1 Rurikllp + 11 Qurkllp) -

The sequence {®} (z)}72, is convergent, because it is nonincreasing and bounded below. Hence,

(I Ruriillp + 1 Qysill») — O

as k — oo. Because (C, A) is detectable, we have xp — 0. Therefore, the regulator is asymptotically
stable as claimed. O

7.2.1 Linear Programming Formulations

With either an [; or [, criterion, we may transform the optimal control problem to a linear program by
introducing auxiliary variables. We formulate (7.5) with an I; criterion as the following linear program

oy (25) = min
Tk sUk Pk Nk sVksZN
N-1 no—1
Z elpp +eln, + Z eTye + 672N,
k=0 k=0

subject to (7.1), the initial condition zy = &;, (7.3), and (7.6), where the non-negative vectors py, 7,
Yk, and zn are specified by the following linear inequalities

—pr < Ruy, < pi, -k < QCxy, <,
—k < QCAkxN <y, —2n < (S7Hazn < 2N

With an [, criterion, we formulate (7.5) as the following linear program

AN .
N (z5) = min
ThsUk Pk Mk V2N

no—1

oo
Dooetm+ D w+0"z,
k=0 k=0

subject to (7.1), the initial condition zo = Z;, (7.3), and (7.6), where the non-negative scalars py ,7,
and - and the vector zy are specified by the following linear inequalities
—pre < Ruy, < pre, —mre < QCzy < e,
—e < QCALzn < e,

—zn < (S7Hazn < 2n.

The variable e is the vector of ones.

7.3 MPC with an /; Norm Objective

Consider the regulation of the following non-minimum phase system

s—3

y(s) = 352 4 4s + 2u

(s),



137
sampled at frequency of 10 Hertz with an initial state disturbance of zo = [1, 1]7. A horizon length of
N = 30 was chosen for both examples. For simplicity we ignore inequality constraints, because they add
little to the theme of the discussion on qualitative performance. Figure 7.2 shows the comparison of the
closed-loop responses between an I; criterion and a quadratic criterion with tuning parameters Q = 5
and R = 1. The simulation indicates the I; formulation forces the state to the origin in finite time as
opposed to the quadratic programming formulation, where the state exponentially approaches the origin.
Further simulations indicate that the dead-beat policy holds for all initial conditions. The finite horizon
problem is also equivalent to the infinite horizon problem, because the [; formulation forces the state to
the origin in finite time. Forcing the state to the origin in finite time is appealing for servo regulation.
However, dead-beat control may yield poor closed-loop performance in process control applications.
The poor performance becomes evident when state noise is added to the simulation. Figure 7.3 shows
a comparison of closed-loop responses when state noise is added. The deviation from the target is less
for the l; formulation; at the same time the dead-beat performance causes aggressive control action. In
many situations this high-gain control is undesirable.

In addition to yielding dead-beat performance, the l; formulation results in idle control per-
formance when the input penalty R is large relative to Q. Figure 7.4 shows the comparison of the
closed-loop responses between the [; criterion and the quadratic criterion with tuning parameters Q = 1
and R = 5. The simulation indicates that the optimal policy for the I; formulation is no control action.
For the given tuning, the idle policy holds regardless of the initial conditions and the horizon length.
Although the qualitative performance, e.g. the settling time, between the quadratic and [; criterion
is not appreciably different for the example, idle control defeats the purpose of implementing a control
system. The reason for the similarity between the open-loop response (idle control policy) and the closed
loop response (quadratic criterion) is that the large input penalty R relative to the output penalty Q
pacifies the controller and, therefore, does not place the closed-loop poles far from the open-loop poles.
So, unlike the dead-beat policy, with the addition of disturbances, the qualitative response of the idle
policy is similar to response of the quadratic formulation.

The two examples demonstrates that the /; formulation yields different qualitative responses
depending on the selection of the tuning parameters. This dichotomy is in direct contrast to the quadratic
formulation, where the qualitative response is the same regardless of the tuning; i.e. the qualitative
response is always exponential convergence. The difference between the two formulations is analogous to
the difference between a positive definite quadratic program and a linear program. Whereas the solution
to the quadratic program may reside in the interior of the feasible region, the solution to a linear program
always resides at an extreme point of the feasible region.

We can specifically attribute the differences between the I; and quadratic formulation to the
nonsmoothness of the objective function. We can interpret the input and output stage costs as competing
exact penalties, because the objective function for the Iy criterion is a sum of norms (an introductory
explanation of exact penalties may be found in Fletcher (Fletcher 1987)). The purpose of exact penalties
is to recast the constrained optimization

min {f(z) : g(x) = 0}
as the equivalent unconstrained optimization
min f(z) + Allg()]lp-

If A > 0 is sufficiently large (greater than the dual norm of the Lagrange multiplier associated with the
constraint g(z) = 0), then the solutions to the two optimization problems are equivalent. Hence, we
may view the terms ||Ruy||; as penalties for the constraint uy = 0 and the terms ||Qyzx||: as penalties
for the constraint y; = 0. When the input penalty R is sufficiently large, the exact penalty ||Rus|:
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Figure 7.2: Comparison of input and output responses for Q =5 and R =1

becomes the binding constraint u; = 0. Likewise, when the output penalty Q is sufficiently large, the
exact penalty ||Qux||1 becomes the binding constraint y; = 0. In particular, the two penalties compete
respectively for dead-beat and idle control performance. We also expect the same qualitative behavior
for the I formulation, because the nonsmoothness is present for any [, formulation,

We demonstrate the effect of the nonsmoothness of the objective function geometrically with a
simple scalar example. Consider the following single stage optimal control problem

min © = |z1| + r|ugl,
uQ
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subject to the scalar system
T1 = axg + buyg.

Recognize that because both the state and input are scalar, this example encompasses all I, norm
formulations. Figure 7.5 shows the graph of © as a function of ug. It is evident from the graph that if

r > b, then the optimal solution is ug = 0, because the slope of the middle section is negative. Likewise,

if r < b, the optimal solution is up = —*;*, which yields dead-beat control, because the slope of the

middle section is positive. If r = b, the optimal solution is not unique. Both solutions are optimal,
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Figure 7.4: Comparison of input and output responses for =1 and R =5

including all solutions in between: either 0 < ug < —axzg/b or —azo/b < ug < 0. If we consider the
quadratic criterion

! 2 2
0" =27 + rug,

then the optimal solution is

__%
b4

In contrast to the /; formulation, the quadratic control is neither dead-beat nor idle for r» > 0.

Ug =
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Figure 7.5: Graph and slopes of the cost function ©.

At this stage we are confronted with the question as to whether the I, formulation is preferable
to a quadratic formulation. In addition to the numerical advantages offered by linear programs, for
many applications the actual control specifications translate more naturally into an [, criterion than a
quadratic criterion. However, the sensitivity of closed-loop behavior for the [; formulation is discon-
certing, because the tuning parameters must be chosen judiciously to exclude undesirable performance.
Not only does one have to be wary of the implications of dead-beat or idle performance, non-uniqueness
of the control presents potential problems, because erratic closed-loop behavior may result. We expect
that additional measures such as input velocity penalties would help counteract the aggressive control
behavior. However, the additional measures would only compensate for and not alter the fundamental
behavior of [, formulations.

7.4 Duality and Hahn-Banach

To provide greater insight in the problem, we can examine the dual optimization problem. Since the
1 problem is non-differentiable, we require the abstract setting of a Banach space, in particular the
Hahn-Banach theorem. Keerthi (1986) also analyzed the qualitative performance of the /; formulation
using dynamic programming arguments. His insightful work provided the impetus for this study.

Theorem 7.4.1 (Hahn-Banach) Let D € R™*™, then

min [|z]| = ||D¥1y‘T|’551<d’ Y) (7.8)

where

z||* := max {z,y).
el i= ma (z,)

Furthermore, the optimal solution x* is aligned with the optimal DTy*, i.e.
(@, DTy*) = [l2* 1 DT y*||*.
Proof. See Luenberger (1969) for details. O
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A direct application of Theorem 7.4.1 is the following proposition.

Proposition 7.4.2 Consider the following optimal control problem

P (20) :=
N-1
n { > I Rukll + 1Qukralls E(330)} ;
k=0
then the dual problem is
N
maxZ(QCAkxo,)\k) (7.9)

k=1
subject to the constraints

|oiweearBrt 3| <1,

for k=1,...N; (7.10a)
[Mello <1, k=1,...,N. (7.10b)
Furthermore, the optimal solutions are aligned:
N N
®*(z0) = M (ur-1,) (QCAT*BR™',\))) —
k=1 j=k
N
> @k, k)
k=1
Proof. 1If we consider the change of variables
uy < Rug, Yr < Qur,
then
k—1 ‘ .
yk — > QCAIR 'u; = QCAgzo,
7=0

for k = 1,...N. Because [l is the dual of /1, the proposition follows directly from Theorem 7.4.1.
O

An immediate consequence of Proposition 7.4.2 is the following result.

Proposition 7.4.3 If
N-1

max Z IQCA’BR;Y|; < 1,

where R is the it" column of R™', then {uo = 0} € argmin ®(zg) for all xg € R™.
Proof. By the subadditivity of norms and the identity ||A%]|c = ||4]]1,

N
D> (QCAT'BR T \)|| <
Jj=1 oo

ZH QCA'BR; 11|kl <

1<z<m

N-1

max Z IQCA’BR; ||, < 1.



143
Because of the alignment property, ug # 0 if and only if

N
D (QCATTEBRTY N =1
j=k o

Hence the proposition follows. O

For the example with Q =1 and R = 5,

> IQCA'BR ||y = 0.325.
7=0

Conjecture 7.4.4 Assume (A, B) is controllable and (A, C) observable. If

oo
. j —1
@lsnmjgo |QCA’BR, ||, > 1,

then there exist N* < oo such that &3 = @7 .

Sketch of a possible proof: For £k = 1,...n, we have the following equality

Ari =) (QCAT*BR;', \;) =
j=k

n—k—1

k—
> (QCAIBR;, M) +
7=0

> (A" *BR;Y, AICTQAjyn)

Jj=0
We can then represent the objective function as follows.

o

or = n}\a,x (QCAka:O,)\k),
* k=1

n—1 [e's}

= D (QCARzo, M) + > (QCAFZ, N,
k=1

k=n

n—1
= > (QCA*zo, \p) +

k=1

(Arzg, ) ATTCTQA ).

J=0

Because ¥ is controllable, we have

Amzo € ran[BR™', ABR™',... /A"'BR™].
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Hence we have

i
L

®, = (QC A zo, A) +

=~
Il
-

iam A"VBR7Y, ZAJTCTQA in)s

M:

v=1 i=1 7=0
n—1
= ) (QCAFzo, A) —
k=1
n m n—k—1
D> ki Y (QCAIBR™, Ajik) + akiAri,
k=1 i=1 §=0
n—1 n m
= (Brs Ak) +220¢m-»4m
k=1 k=1 i=1

Suppose that ||Ag]lo = 1 for all £ € N. By assumption, the sequence {\;} cannot be extremal with
respect to Ag;. Otherwise the constraint ||Ag;||co < 1 is violated.

Z_: B M) + DD lowkil -
- k=

k=1 1i=1
Somehow, the heart of the conjecture, this implies that there exists an integer N* such that
[[Ak]|loo < 1for k > N*. The remaining steps follow from the observability assumption and the alignment
property . &
Let us consider again the single stage optimal control problem
min ||z || + 7||uo]|
uo
subject to the scalar system
T1 = axo + buog.
Using Proposition 7.4.2, we construct the dual problem
max oA
o
subject to

BAI<r, <L

The solution to both the primal and dual problems satisfy the following alignment or complementarity
condition

ug(bA) + 21\ = |z1] + r|ug)- (7.11)

By inspection we note z; # 0 if and only if [A\| = 1. Otherwise the inequality (7.11) cannot be satisfied:
|bA| < 1. Likewise, ug # 0 if and only if [bA| = r. These conditions are depicted in Figure 7.6. The
preceding arguments are simply extensions of these elementary results.



145

(b/r) A
) (bin)>1
1

(b/r)<1

A
y
>

Figure 7.6: The duality conditions.

7.5 Conclusion

The main contribution of this chapter has been to illustrate some of the consequences of using MPC
with an [, criterion. Our motivation for studying the [, criterion was that for both [; and I, criterion
the resulting optimization can be formulated as a linear program. Linear programming formulations
are desirable, because they are computationally less demanding than standard quadratic programming
formulations. Furthermore, theoretical issues such as stability are a straightforward extension of the
results available for the quadratic criterion. However, performance issues raise questions concerning
the suitability of the I, criterion for MPC. Although possessing desirable theoretical and numerical
properties, I, formulations suffer many practical drawbacks. The main consequence of the I, criterion
is that it may yield either dead-beat or idle control response. Both of these types of responses may be
unsuitable for process control application.

While our arguments have been mostly qualitative, it is evident that the culprit is the non-
smoothness of the objective function. The nonsmoothness causes the stage cost functions to act as
competing exact penalties for the constraints u = 0 and y = 0. For the scalar system, the behavior
is simple to understand. Extending these results to higher dimension systems is more difficult and is
currently unresolved as illustrated in Section 7.4.
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Chapter 8

Application of Interior-Point

Methods to Model Predictive
Control !

The MPC methodology is appealing to the practitioner because input and state constraints can be
explicitly accounted for in the controller. A practical disadvantage is its computational cost, which has
tended to limit MPC applications to linear processes with relatively slow dynamics. For such problems,
the optimal control problem to be solved at each stage of MPC is a convex quadratic program. While
robust and efficient software exists for the solution of unstructured convex quadratic programs, significant
improvements often can be made by exploiting the structure of the MPC subproblem.

When input and state constraints are not present, MPC with an infinite horizon is simply the
well-known linear-quadratic regulator problem. Even when constraints are present, the infinite-horizon
MPC problem generally reduces to a linear-quadratic regulator after a certain number of stages (c.f.
(Chmielewski and Manousiouthakis 1996, Scokaert and Rawlings 1998, Sznaier and Damborg 1987))
and therefore can be recast as a finite-dimensional quadratic program. Since this quadratic program can
be large, with many stages, it is important that algorithms be efficient for problems with long horizons.

Unconstrained discrete-time linear-quadratic optimal control problems can be solved by using a
discrete-time Riccati equation. The computational cost of this algorithm is linear in the horizon length V.
A different formulation obtained by eliminating the state variables results in an unconstrained quadratic
function whose Hessian is dense, with dimensions that grow linearly in N. The cost of minimizing
this quadratic function is cubic in N, making it uncompetitive with the Riccati approach in general.
There is a third option, however—an optimization formulation in which the states are retained explicitly
as unknowns in the optimization and the model equation is retained as a constraint. The optimality
conditions for this formulation reveal that the adjoint variables are simply the Lagrange multipliers
for the model equation and that the problem can be solved by factoring a matrix whose dimension
again grows linearly with N. In this formulation, however, the matrix is banded, with a bandwidth
independent of N, so the cost of the factorization is linear rather than cubic in N. The discrete-time
Riccati equation can be interpreted as a block factorization scheme applied to this matrix.

Traditionally, the discrete-time Riccati equation is obtained by using dynamic programming to
solve the unconstrained linear optimal control problem. The essential idea in dynamic programming is
to work stage-by-stage through the problem in reverse order, starting with the final stage N. The opti-
mization problem reduces to a simpler problem at each stage. (See Bertsekas (1987) for further details.)
Block factorization, like dynamic programming, exploits the multi-staged nature of the optimization

!Portions of this chapter were published in Rao et al. (1998) and Rao, Campbell, Rawlings and Wright
(1997)
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problem. The key difference is that the block factorization approach tackles the problem explicitly,
whereas dynamic programming tackles the problem semi-implicitly by using Bellman’s principle of opti-
mality. The explicit treatment allows greater flexibility, however, since the block factorization approach
retains its inherent structure even when inequality constraints are added to the formulation.

When constraints are present, the scheme for unconstrained problems must be embedded in an
algorithmic framework that determines which of the inequalities are active and which are inactive at the
optimum. At each iteration of the outer algorithm, however, the main computational operation is the
solution of a set of linear equations whose structure is very like that encountered in the unconstrained
problem. Hence, the cost of performing each iteration of the outer algorithm is linear in the number
of stages N. This observation has been made by numerous authors, in the context of outer algorithms
based on both active-set and interior-point methods. Glad and Jonson (1984) and Arnold, Tatjewski and
Wolochowicz (1994) demonstrate that the factorization of a structured Lagrangian in an optimal control
problem with a Bolza objective for an active set framework yields a Riccati recursion. Wright (1993,
1997a), Steinbach (1994), and Lim, Moore and Faybusovich (1996) investigate the Bolza control problem
in an interior-point framework.

In this chapter we present an MPC algorithm based on an interior-point method, in which a block
factorization is used at each iteration to obtain the search direction for the interior-point method. Our
work differs from earlier contributions in that the formulation of the optimal control problem is tailored
to the MPC application, the interior-point algorithm is based on Mehrotra’s algorithm (Mehrotra 1992)
(whose practical efficiency on general linear and quadratic programming problems is well documented),
and the linear system at each interior-point iteration is solved efficiently by a Riccati recursion. We
compare our approach with the alternative of using the model equation to eliminate the states, yielding
a dense quadratic program in the input variables alone, and present results obtained for three large
industrial problems.

We use order notation in the following (standard) way: If a matrix, vector, or scalar quantity M
is a function of another matrix, vector, or scalar quantity E, we write M = O(||E||) if there is a constant
B such that ||M|| < B||E|| for all ||E|| sufficiently small. We write M = O(||E||) if there is a constant
such that [|E[|/8 < [M]| < BB

We say that a matrix is “positive diagonal” if it is diagonal with positive diagonal elements. The
term “nonnegative diagonal” is defined correspondingly. We use SPD as an abbreviation for “symmetric
positive definite” and SPSD as an abbreviation for “symmetric positive semidefinite.”

8.1 Problem Statement

In this chapter we work with a general form of the MPC problem, which contains all the features
discussed in Chapter 6: finite horizon, endpoint constraints, and soft constraints. This general form is

N-1

1 _

1€r1;n b(u,z,€) = Z §(kaka +ul Ruy, 4 221 Muy, + €} Zep) + 27 e + 2 5Qna N, (8.1)
s TH€ k=0
subject to

x0o = Zj, (fixed) (8.2a)
Try1 = Az + Buy, k=0,1,...,N -1, (8.2b)
Duj, — Gz, < d, k=0,1,...,N -1, (8.2¢)
H:ck—ek S ]’L, k,‘—l,Z,. .,N, (82(1)
e, > 0, k=1,2,...,N, (8.2¢)
F.TN =0 (8.2f)
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We assume throughout that the matrices in (8.1) satisfy the properties

. . Q M7 .
R isPSD,  Z is SPSD, [ u R ] is SPSD. (8.3)

Note that the last property holds for the matrices considered in Section 6.3, since in making the substi-
tutions to obtain the form (6.14) we obtain

Q+LT(R+S)L —LTS LT(R+S)

[]\?T ]\1:2[](_ —-SL S =S
(R+ S)L -S (R+9)
Q 00 LT LT

= 0 00|+ |-I|S[L -I I]+| 0 |[R[L 0 I],
0 00 I I

which is a sum of SPSD matrices and is therefore itself SPSD.

8.2 The Interior-Point Method

In this section, we describe our interior-point-based approach for solving the MPC problem (8.1), (8.2).
We start with a general description of the interior-point method of choice for linear and convex quadratic
programming: Mehrotra’s predictor-corrector algorithm. The remaining sections describe the specializa-
tion of this approach to MPC, including the use of the Riccati approach to solve the linear subproblem,
handling of endpoint constraints, and hot starting.

8.2.1 Mehrotra’s Predictor-Corrector Algorithm

Active set methods have proved to be efficient for solving quadratic programs with general constraints.
The interior-point approach has proved to be an attractive alternative when the problems are large and
convex. In addition, this approach has the advantage that the system of linear equations to be solved
at each iterate has the same dimension and structure throughout the algorithm, making it possible to
exploit any structure inherent in the problem. The most widely used interior-point algorithms do not
require a feasible starting point to be specified. In fact, they usually generate infeasible iterates, attaining
feasibility only in the limit. From a theoretical viewpoint, interior-point methods exhibit polynomial
complexity, in contrast to the exponential complexity of active-set approaches.

In this section, we sketch an interior-point method for general convex quadratic programming
problems and discuss its application to the specific problem (8.1). A more complete description is given
by Wright (1997b).

Consider the following convex quadratic program

1
min ®(w) = §wTQw + cT'w, subject to Fw = g, Cw < d, (8.4)
w

where () is an SPSD matrix. The Karush-Kuhn-Tucker (KKT) conditions for optimality are that there
exist vectors 7* and A* such that the following conditions are satisfied for (w,m, A) = (w*, 7*, \*):

Qu+FTr+CTAx+c¢ = 0,
—Fw+g = 0,
—Cw+d > 0,
A > 0,
Aj(—Cw+d); = 0, i=1,2,...,m,
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where m is the number of rows in the matrix C. Because the objective function is convex, the KKT
conditions are both necessary and sufficient for optimality. By introducing a vector ¢ of slacks for the
constraint Cw < d, we can rewrite these conditions in a slightly more convenient form:

Qw+FTn+CTXx +¢
_ —Fw+g _
F(w,m, A\, t) = Cw—t1d =0, (8.5a)
TAe
(A1) >0, (8.5b)

where T" and A are diagonal matrices defined by
T=diag(t1,t2,...,tm), A:diag()\l,)\g,...,)\m),

and e = (1,1,...,1)T.

Primal-dual interior-point methods generate iterates (w?, 7%, A\, %), i = 1,2,..., with (A%, #!) > 0
that approach feasibility with respect to the conditions (8.5a) as i — oo. The search directions are
Newton-like directions for the equality conditions in (8.5a). Dropping the superscript and denoting the
current iterate by (w, , A, t), we can write the general linear system to be solved for the search direction
as

Q FT CT Aw rQ
-F AT _ rr

-C —I A | T re | (8.6)
T A At Tt

(Note that the coefficient matrix is the Jacobian of the nonlinear equations (8.5a).) Different primal-dual
methods are obtained from different choices of the right-hand side vector (rg,rp,rc,r;). The duality
gap p defined by

p=A"t/m (8.7)

is typically used as a measure of optimality of the current point (w,m, A,t). In principle, primal-dual
interior-point methods ensure that the norm of the function F defined by (8.5a) remains bounded by
a constant multiple of p at each iterate, thus ensuring that p is also a measure of infeasibility of the
current point. However, the latter condition is rarely checked in practical algorithms.

We use a variant of Mehrotra’s predictor-corrector algorithm (Mehrotra 1992) to solve (8.4).
This algorithm has proved to be the most effective approach for general linear programs and is similarly
effective for convex quadratic programming. The first part of the Mehrotra search direction—the pre-
dictor or affine-scaling step—is simply a pure Newton step for the system (8.5a), obtained by solving
(8.6) with the following right-hand side:

rQ Qu+FTn+CTA+c¢

e | _ _ —Fw+g

ro - f(waﬂ-a)‘at) - —C’I,U _ t+d (88)
T¢ TAe

We denote the corresponding solution of (8.6) by (Awag, Amag, Adagr, Atag). The second part of the
search direction—the centering-corrector direction (Awee, ATree, Adee, Atee)—is calculated by choosing
the centering parameter o € [0,1) as outlined below and solving the system (8.6) with the following
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right-hand side:

rQ 0
rr 0

— 8.9
I X , (59)
T —AT,gAN,ge + ope

where AT,s and AA,g are the diagonal matrices constructed from the elements of At,g and Al,g,
respectively.

The following heuristic for choosing the value of ¢ has proved to be highly effective. We first
compute the maximum step length a,g that can be taken along the affine-scaling direction, as follows:

o = argmax{a € [0,1]| (A, t) + a(Alagr, Atagr) > 0}.
The duality gap pas attained from this full step to the boundary is

pagt = (A + aldag) T (t + aAtag)/m.

3
_ (/"aﬂ‘)
g = .
u

The search direction is obtained by adding the predictor and centering-corrector directions, as

Finally, we set

follows:
(Aw, A, AN At) = (Awag, ATagr, Adasr, Atag) + (AWee, ATree, Adee, Atee)- (8.10)

Note that the coefficient matrix in (8.6) is the same for both the predictor and centering-corrector
systems, so just one factorization of this matrix is required at each iteration. Apart from this factoriza-
tion, the main computational operations at each iteration include two back-substitutions for two different
right-hand sides, and a number of matrix-vector operations.

The distance we move along the direction (8.10) is defined in terms of the maximum step @max
that can be taken without violating the condition (8.5b):

Omax = argmax {a € [0,1]] (A, t) + a(AX, At) > 0}.
The actual steplength « is chosen to be
QO  YOmax, (8.11)

where + is a parameter in the range (0,1) chosen to ensure that the pairwise products \;t; do not become
too unbalanced. The value of « is typically close to 1; it has proved effective in practice to allow it to
approach 1 as the algorithms gets closer and closer to the solution. See Mehrotra (1992) for the details
of a heuristic for choosing ~.

The algorithm does not require the initial point to be feasible, and checks can be added to detect
problems for which no feasible points exist. In our case, feasibility of the MPC problem obtained from
the can be determined a priori by solving a linear program.

Finally, we note that block elimination can be applied to the system (8.6) to obtain reduced
systems with more convenient structures. By eliminating At, we obtain the following system:

Q FT CT Aw TQ def fQ
-F Am | = rE = | ir |- (8.12)
—C AT AN ro + Afl’rt e,
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Since A~T is a positive diagonal matrix, we can easily eliminate A\ as well to obtain

Q+CTAT'C FT ] [ Aw ] _ [ rg — CTT—Y(Arg +14)

r 0 A (8.13)

Tr

As we see in the next section, these eliminations can be applied to our particular problem to put the
system in a form in which we can apply the Riccati block-elimination technique of Sections 8.2.3 and
8.2.4.

We conclude with a note on the sizes of elements in ¢ and A and their effect on elements of the
matrices in (8.12) and (8.13). In path-following interior-point methods that adhere rigorously to the
theory, iterates are confined to a region in which the pairwise products ;\; are not too different from
each other in size. A bound of the form

tidi > (8.14)

is usually enforced, where u is the average value of t;\; (see (8.7)) and v € (0,1) is constant, typically
v = 10~*. When the primal-dual solution set for (8.4) is bounded, we have further that

tlSIBJ )\zSBJ z=1,2,,m, (815)
for some constant bound 3 > 0. It follows immediately from (8.14) and (8.15) that

Y ti B> Ai ’
LTu< <t Lu< . 8.16
FEHS N ST gk (8.16)
Hence, the diagonal elements of the matrices 7-'A and A~'T lie in the range [O(u), O(u™")].
Although bounds of the form (8.14) are not enforced explicitly in most implementations of
Mehrotra’s algorithm, computational experience shows that they are almost always satisfied in practice.
Hence, it is reasonable to assume, as we do in the analysis of numerical stability below, that the estimates

(8.16) are satisfied by iterates of our algorithm.

8.2.2 Efficient MPC Formulation

The optimal control problem (8.1), (8.2) traditionally has been viewed as a problem in which just
the inputs are variables, while the states are eliminated by direct substitution using the transition
equation (8.2b) (see, for example, (Muske and Rawlings 1993)). We refer to this formulation hereafter
as the standard method. Unfortunately, the constraint and Hessian matrices in the reduced problem
resulting from this procedure are generally dense, so the computational cost of solving the problem is
proportional to N®. Efficient commercial solvers for dense quadratic programs (such as QPSOL (Gill,
Murray, Saunders and Wright 1983)) can then be applied to the reduced problem.

Unless the number of stages N is small, the O(N?®) cost of the standard method is unacceptable
because the “unconstrained” version of (8.1) is known to be solvable in O(N) time by using a Riccati
equation or dynamic programming. We are led to ask whether there is an algorithm for the constrained
problem (8.1), (8.2) that preserves the O(N) behavior. In fact, the interior-point algorithm of the
preceding section almost attains this goal, since it can be applied to the problem (8.1), (8.2) at a cost of
O(N) operations per iteration. The rows and columns of the reduced linear systems (8.12) and (8.13)
can be rearranged to make these matrices banded, with dimension proportional to N and and bandwidth
independent of N. Since the number of iterations required by the interior-point algorithm depends
only weakly on N in practice, the total computational cost of this approach is only slightly higher than
O(N). In both the active set and interior-point approaches, the dependence of solution time on other
parameters, such as the number of inputs, the number of states, and the number of side constraints, is
cubic.
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Wright (1993, 1997 a) describes a scheme in which these banded matrices are explicitly formed and
factored with a general banded factorization routine. In the next section, we show that the linear system
to be solved at each interior-point iteration can be reduced to a form identical to the “unconstrained”
version of (8.1), (8.2), that is, a form in which the side constraints (8.2¢), (8.2d) are absent. Hence,
a Riccati recursion similar to the technique used for the unconstrained problem can be used to solve
this linear system. Even though such a scheme places restrictions on the use of pivoting for numerical
stability, we show by a simple argument that numerical stability can be expected.

Suppose that the interior-point algorithm of Section 8.2.1 is applied to the problem (8.1), (8.2).
We use Ak, (k, and 7 to denote the Lagrange multipliers for the constraints (8.2c), (8.2d), and (8.2e),
respectively. We rearrange the linear system (8.12) to be solved at each iteration of the interior-point
method by “interleaving” the variables and equations according to stage index. That is, the primal and
dual variables for stage 0 are listed before those for stage 1, and so on. For this ordering, the rows of
the system (8.12) that correspond to stage k are as follows:

r Q M —GT AT 1| Az, re
M* R DT BT Ay re
-G D -xP ANy r
— D
A B 6 I Api | | T | (g7)
—Xin e Akt Tht1
—EkH+1 -1 H Ank—i-l TIZ—H
I -1 A A€k+1 T'Z_H
_ -1 ar Q ]| dwa || s

In this system, the diagonal matrices EE , X, and Ef , which correspond to A~!T in the general system
(8.12), are defined by

P = (Ap)7'TR, =5 = (Bp)'TE, SH = (He) T, (8.18)

where Ay, 2, and Hj, are the diagonal matrices whose diagonal elements are the Lagrange multipliers
Ak, &k, and g, while T,g‘, T,f, and T}! are likewise diagonal matrices constructed from the slack variables
associated with the constraints (8.2¢), (8.2d), and (8.2¢), respectively. The final rows in this linear
system are

... Q@ M -GT AT T - [ %]
MT R DT BT Azn_1 re
-G D -%3, Auy N1
A B -1 AAN-1 .
-3 -1 Apv | = | 5, |, (819
—x# _1 H Adn .
-1 -I Z Ann o
-1 HY Qv FT Aen %
L F ] Azy B
IV i

where 8 denotes the Lagrange multiplier for the endpoint constraint (8.2f).
By eliminating the Lagrange multiplier steps A)g, A&k, Ang, and Aeg from the systems (8.17)
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and (8.19), we derive the following analog of the compact system (8.13):

[ Ry B” [ Aug ] [ 7Y
B —I Apo o
-1 Qi M AT Az 77
M{" R, BT Auy 7
A B -1 . Ap1 ;ii’
—I Q2 M2 A A$2 = Fg‘ 5 (820)
M{ R, BT Aus 7
A B : :
QN FT A.Z'N F%V
F AY:I N
where
R, = R+DT(EP)-'D, k=0,...,N—1,
My = M-GT(EP)-'D, k=1,...,N—1,
Zy = Z+ () t+EH k=1,...,N, (8.21)
Qr = Q+GT'EP)Y G+ HT|(ZE) - =HZ,2H) " YNH, k=1,...,N—1,
Qv = Qn+HT[ER) ™ - (ERZNzZR) A,
and
e = TE+DT(2D)71T2, k=0,... ,N—1,
o=k k=0,...,N—1,
Feoo= e —(Z5) 7t — (SH) Wy, k=1,...,N, (8.22)
o= 4+ =GTED) trp + HY () Yl + HY (S Zy) 7, k=1,...,N—1,
% = i+ HYER) Yl + HY (SR Zn) 1.

This matrix has the same form as the KKT matrix obtained from the following problem in which the
only constraint (apart from the model equation and initial state) is a final point condition:

N-1

1 1 1

min ®(u,z) = §u§R0u0 + Z §(kakak + ukauk + kaTMkuk) + ix%QN;vN, (8.23)

U,

k=1
subject to

xo = Iy, (fixed), (8.24a)
Trp+1 = Az + Buy, k=0,1,...,N -1, (8.24b)
Fzy = O. (8.24c)

The problem (8.23), (8.24) is convex if the matrices Ry, @n, and

Qr My
k=1,2,...,.N—1 8.25
Nl 2. N1, (8.25)

are all SPSD. The following brief discussion shows that this property holds. First, we show that
(==t _ (2 7, 2H)71 g positive diagonal for all k =1,2,...,N. (8.26)
By using the definition of Z} above, together with the diagonality of Z and X, we have that
= -z
= O -CFZ)™ = ED - (S Z+ 2@+ D)7
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Since Z, £, and ¥ are all positive diagonal matrices, the final expression above is a product of two
positive diagonal matrices, and therefore is itself positive diagonal. Hence, property (8.26) holds. Note
from (8.21) that Qn is an SPSD modification of an SPSD matrix, and therefore is itself SPSD. Note too
that from (8.21) again, we have

]
< [ R]e[ % o o[ s 0]

forall k=1,2,...,N — 1. Because of (8.26), we have that the left-hand side of this expression is a sum
of SPSD terms, and therefore is itself SPSD. Finally, note from (8.21) that each Ry, k =0,1,...,N -1
is the sum of a PSD matrix R and an SPSD term D7 (XP)~! D, and is therefore itself SPD. We conclude
that the objective function (8.23) is convex.

If we use n to denote the number of components of each state vector z and m to denote the
number of components of each input vector u, we find that the banded coefficient matrix in (8.20) has
dimension approximately N(2n + m) and half-bandwidth approximately 2n + m, so that the computa-
tional cost of factoring it by Gaussian elimination would be proportional to N(m + n)3. This estimate
is linear in IV, unlike the naive dense implementation for which the cost grows like N3(m + n)3.

8.2.3 Block Elimination: No Endpoint Constraints

We can improve the efficiency of the algorithm by applying a block factorization scheme to (8.20) in
place of the elimination scheme for general banded matrices. In this section, we consider the case in
which endpoint constraints are not present in the problem (so that the quantities F, AS, and r? do not
appear in (8.20)). We describe a block elimination scheme and show that it yields a Riccati recursion.
For simplicity, we rewrite the system (8.20) for the case of no endpoint constraints as follows:

[ Ry BT 1T Aug ] -
B =1 &70 7
I Qi M; AT Az, 7
M R. BT Auy Fu
A B -1 AL =D
P =" |. (8.27)
—I Q2 M, AT &2 1:%6
wf omowm | s ||
A B :
L CooQn 1L &'N J L TN
Our scheme yields a set of matrices I, € R®*™ and vectors T € R*, k=N,N — .,1, such

that the following relationship holds between the unknown vectors Apk 1 and Az in (8. 27):
~App_y + WAz =7, k=N,N-1,...,1. (8.28)
We can see immediately from (8.27) that (8.28) is satisfied for kK = N if we define
My = Qu, TN = X (8.29)

The remaining quantities II; and 7 can be generated recursively. If (8.28) holds for some %k, we can
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combine this equation with three successive block rows from (8.27) to obtain the following subsystem:

Ay
I Qw1 My, AT “Pr—2 o
T T Amk—l .
Mgy Rr-1 B o N
A B 0 -I Aupr | = A (8.30)
-1 T Apy T
AZL‘k

Elimination of &)kfl and &:k yields

Ay
~I Q1+ ATIA ATILB+ My | | 2072 | [ 7, + AT, + ATm (5.31)
0 BTMA+MT, Ry,+BTIB || 22%1 | = | e, + BT | + BT, ‘
U —1
Finally, elimination of @k_l yields the equation
—Apy 5 + M1 Az g = mp1. (8.32)
where
My = Qp—1+ATIA- (8.33a)
(ATI,B + My 1)(Ry_1 + BT, B) (BT A + M ),
1 = fo_y + AT+ ATy — (8.33Db)

(AT B + My—1)(Rg—1 + BT, B) 7' (7¥_; + BT _ | + BT 7).

The equation (8.33a) is the famous discrete-time Riccati equation for time-varying weighting matrices.

The solution of (8.27) can now be obtained as follows. We first set IIy and m, using (8.29), and
then apply (8.33a) to obtain IIj, and my for for k = N —1,N — 2,...,1. Next, we combine (8.28) for
k =1 with the first two rows of (8.27), we obtain

R, BT Aug i
B I Ap, | =| 7 |, (8.34)
—I Hl 5,\’1;'1 1

and solve this system for Aug, Az;, and &’0- Next, we obtain from (8.31) and (8.30) that

&J,k = (Rk + BTH/C_HB)*l[f}: + BTHk_HFi + BTWk_H — (BTHk_HA + Mg)&'k],
&L’]H_l = A&'k—FB&Jk, k=1,2,...,N—1.

Finally, the steps &)k for k=N —1,N—2,...,1 can be recovered from (8.28) The computational cost
of the entire process is O(N(m + n)?).

The question of stability of this approach is an important one. The block elimination/Riccati
scheme just described essentially places restrictions on the pivot sequence, that is, the order in which
the elements of the matrix in (8.27) are eliminated. (Note however that pivoting for numerical stability
can occur “internally,” during the factorization of (R;_; + BTII;B) in (8.33a) and (8.33b) for k =
N,N-1,...,2.) In other circumstances, pivot restrictions are well known to lead to numerical instability,
which manifests itself by blowup of the intermediate quantities that arise during the factorization (by
which we mean that the intermediate quantities become much larger than the original data of the
problem.) However, in the present case, stability can be established by the simple argument of next few
paragraphs.
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The coeflicient matrix in (8.27) becomes increasingly ill-conditioned near the solution. This
feature results from wide variation among the elements of the diagonal matrices ¢, X5, and XF defined
by (8.18) which, as we see from (8.16), can vary between ©(u) and ©(u~!), where the duality measure
i approaches zero as the iterates approach the solution. It follows from (8.21) that Qx, k= 1,2,...,N
has its eigenvalues in the range [0, ©(p~1)], while positive definiteness of R ensures that the eigenvalues
of Rg, k=0,1,..., N — 1 lie in an interval [©(1),©(u"!)]. Since we showed earlier that the matrices

[Qk M;,

k=1,2,...,N—1
Mlz"’ Rk:|’ )< ’ )

are SPSD, we deduce from the comments just made that their eigenvalues too must lie in the range
0,0k 1))

We now show that blowup does not occur during computation of the Riccati matrices Il and
that, in all cases, their eigenvalues lie in the range [0, ©(u~1)]. This is certainly true of the starting matrix
Iy defined by (8.29). For the remaining matrices defined by (8.33a), we assume that our assertion is
true for Il for some k, and prove that it continues to hold for II;_;. Note that the matrix

[ Qr—1 My, ] n [ AT

I .
by I BT] 4 B], (8.35)

has both terms SPSD, with eigenvalues in the range [0, ©(u1)]. Since IIx_; is the Schur complement of
(Rg—1 + BTTI;,B) in the matrix (8.35), it must be positive semidefinite. (Note that ITy_; is well defined
by the formula (8.33a), since Rj_; + BTTI;B is an SPSD modification of the SPD matrix R, and so
its inverse is well defined.) Moreover, we can see from (8.33a) that II; is obtained by subtracting an
SPSD matrix from he SPSD matrix Q1 + AT A, and so its eigenvalues are bounded above by the
eigenvalues of the latter matrix. By combining these observations, we conclude that the eigenvalues of
I;_; lie in the range [0,0(p~1)], as claimed.

For the vectors 7y, k = N, N—1,..., 1, we have from the invertibility of Ry_; +BTII, B that they
are well defined. Moreover, since the smallest eigenvalue of R;_; + BTII; B has size ©(1), we have from
the formula (8.33b) and the estimate ||TT;|| = O(u~!) from the previous paragraph that ||7;|| = O(u—2),
and so this vector does not blow up with & either. (In fact, a more refined analysis can be used to deduce
that ||7x|| = O(p™1), but we omit the details of this argument here.)

We conclude that numerical instability is not a problem in applying the block elimination/Riccati
scheme and that, in fact, we can expect this scheme to be as stable as any general scheme based on
Gaussian elimination with pivoting.

It might be expected that the inherent ill conditioning of the system (8.27) may lead to an
inaccurate computed solution, even when our numerical scheme is stable. It has long been observed
by interior-point practitioners, however, that the computed steps are surprisingly effective steps for
the algorithm, even on later iterations on which y is tiny. This observation has recently found some
theoretical support (see Wright (1996, 1997¢)) but the issues involved are beyond the scope of this
chapter.

8.2.4 Block Elimination: Endpoint Constraints

When endpoint constraints are present in the problem, they can be accounted for by adding extra
recursions to the scheme of the previous section. We describe this approach below, but first mention
an alternative way to handle the problem. The presence of endpoint constraints in the model is often
symptomatic of the transition matrix A having eigenvalues outside the unit circle. In these circumstances,
it is known that Riccati-based techniques can encounter stability difficulties. These difficulties are
ameliorated by the technique of parameterizing the input as ux = Lz +7k, where L is a linear stabilizing
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feedback gain for (A4, B), as mentioned in Section 6.3. Alternatively, we can simply discard the Riccati
strategy and instead apply a standard banded Gaussian-elimination scheme with partial pivoting to the
system (8.20). Though this approach does not exploit the structure of the problem quite as well as the
Riccati strategy, its stability is guaranteed. It can be used as a backup approach if stability problems
are encountered with the modified Riccati approach that we now describe.

In the language of linear algebra, our modification of the block-elimination approach proceeds
by partitioning the coefficient matrix in (8.20) as

|: Tll T12 ]
TL Ty |’
where
[ R, BT T
B I 0
-I Qi M AT 0
Ty = My R, BT y,Tio=1| ¢ |, Tea=0. (8.36)
A B 0
_ FT
i QN |

We partition the right-hand side and solution of (8.20) correspondingly and rewrite the system as

[Tu T12][y1]:[r1]
T To Y2 ra |’

where 7, = 7% and y» = AB. By simple manipulation, assuming that T}, is nonsingular, we obtain

[T22 — Tlng_llTlg]yg = T9 — TI,I;TI_II’Fl, (8373)
i T17117’1 - TﬂlTlgyz. (837b)

We calculate the vector Ty7'r; by using the approach of Section 8.2.3. The other major operation is to
find Ty;' T2, which we achieve by solving the following system:

[ Ry BT ] ) SEPE
B ~I o5 0
P
-1 Ql My AT q)U 0
MI R, BT o 0
A B —I o 0
= 8.38
I Qs M, AT o7 0 (8:38)
xz
MI R, BT o3
I L QN | L N A4 I FT i
The structure of this system is identical to (8.27) except that the right-hand side is now a matrix instead
of a vector. As in the preceding section, we seek n x ny matrices ¥y, k = N,N — 1,...,1 (where ny

is the number of rows in F)) such that the following relationship holds between ®,_, and ®% satisfying
(8.38):

—®°_ 4+ T®F =W, k=N,N-1,..,1. (8.39)
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(Note that II; in (8.39) are identical to the matrices generated by the formulae (8.29), (8.33a) of the
previous section. This is hardly surprising, since these matrices depend only on the coefficient matrix
and not on the right-hand side.) An argument like that of the previous section yields the following
recursion for ¥y:

Uy = FT,
U, = ATU, — (ATTB + My_1)(Rx_1 + B'I,B)'BT¥;, k=N,N—1,...,2.
We solve (8.38) by using a similar technique to the one used for (8.27).

We now recover the solution of (8.20) via (8.37). By substituting from (8.36) and (8.38), we find
that

Ty =TT Ty = —(®%)"F7,
ro — Tlng_llTl = T’ﬂ - F&L’N,

so that y2 = Af can be found directly by substituting into (8.37a). We recover the remainder of the
solution vector from (8.37b) by noting that

[ &Lo 1 [ ®Y T
So || o
A.’L‘l (I)f
—1 ~1 Au oy
Tll T —T11 T12y2 = &)1 — (I)IIJ Aﬂ
Az, 3
| Azy | L ®%

In the implementation, the recurrences for computing I, ¥y, and 7y take place simultaneously,
as do the recurrences needed for solving the systems (8.27) and (8.38). The additional cost associated
with the n; endpoint constraints is O(N(m + n)?ny). When ny < n—which is a necessary condition for
(8.20) to have a unique solution—the cost of solving the full system (8.20) is less than double the cost
of solving the subsystem (8.27) alone by the method of the preceding section.

8.2.5 Hot Starting

Model predictive control solves a sequence of similar optimal control problems in succession. If the model
is accurate and disturbances are modest, the solution of one optimal control problem can be shifted one
time step forward to yield a good approximation to the solution of the next problem in the sequence.
Unfortunately, an approximate solution of this type is not a suitable starting guess for the interior-point
method, since it usually lies at the boundary of the feasible region, whereas interior-point methods
prefer starting point that strictly satisfy the inequalities in the constraint set. Starting points close to
the so-called central path are more suitable. In the notation of Section 8.2.1, the characteristics of such
points are that their pairwise products A;t; are similar in value for i = 1,2,...,m and that the ratio
of the KKT violations in (8.5a)—measured by F(z,m, A, t)—to the duality gap u is not too large. We
can attempt to find near-central points by bumping components of the “shifted” starting point off their
bound. (In the notation of Section 8.2.1, we turn the zero value of either ¢; or A; into a small positive
value.) A second technique is to use a shifted version of one of the earlier interior-point iterates from
the previous problem. Since the interior-point algorithm tends to follow the central path, and since the
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central path is sensitive to data perturbations only near the solution, this strategy generally produces
an iterate that is close to the central path for the new optimal control subproblem.

In the presence of new disturbances, the previous solution has little relevance to the new optimal
control problem. A starting point can be constructed from the unconstrained solution, or we can perform
a cold start from a well-centered point, as is done to good effect in linear programming codes (see
Wright (19975, Chapter 10)).

8.3 Computational Results

To gauge the effectiveness of the structured interior-point approach, we tested it against the “standard”
quadratic programming approach, in which the states xj are eliminated from the problem (8.1), (8.2)
by using the model equation (8.2b). A reduced problem with unknowns uy, k =0,1,..., N — 1 and ¢,
k =1,2,...,n is obtained. The reduction in dimension is accompanied by filling in of the constraint
matrices and the Hessian of the objective. The resulting problem is solved with the widely used code
QPSOL (Gill et al. 1983), which implements an active set method using dense linear algebra calculations.

We compared these two approaches on three common applications of the model predictive control
methodology.

Example 1: Copolymerization Reactor. Congalidis, Richards and Ray (1986) presented the follow-
ing normalized model for the copolymerization of methyl methacrylate (MMA) and vinyl acetate (VA)
in a continuous stirred tank reactor:

0.34 0.21 0.50(0.50s+1) 0 6.46(0.95+1)
0.85s5+1 0.42s5+1 125240.45+1 0.07520.3s+1
—0.41 0.66 —0.3 0 —3.72
G(S) _ 2.41s5+1 1.51s+1 1.45s5+1 0.8s5+41
0.30 0.49 —0.71 —0.20 —4.71
2.54s5+1 1.54s+1 1.35s+1 2.71s+1 0.00852+0.41s+1
0 0 0 0 1.02

0.0752+4-0.31s+1

The normalized inputs into the system are the flows of monomer MMA (u;), monomer VA (us), initiator
(u3), and transfer agent (u4), and the temperature of the reactor jacket (us). The normalized outputs
of the systems are the polymer production rate (y;), mole fraction of MMA in the polymer (y2), average
molecular weight of the polymer (y3), and reactor temperature (y4). The model was realized in block
observer canonical form (Chen 1984) where the dimension n of state after the realization is 18, and the
number m of inputs is 5. The model was discretized with a sample period of 1.

The normalized inputs were constrained to be within 10% of their nominal operating steady—
state values The tuning parameters were chosen to be ) = CTC (where C is the measurement matrix
obtained from the state space realization), while M = 0, R = (0.1)I, and the number of stages N is
100. Due to the very slow dynamics of the reactor, Q was obtained using the technique described by
Rawlings and Muske (1993). The parameters z and Z are vacuous, since there are no soft constraints
on the state. The controller was simulated with the following state disturbance:

[.'U()]j = 0.02 % sinj.

The interior-point method required 14 iterations to solve the optimization problem. Figure 8.1 shows
the optimal control profile normalized with the upper bounds on the input constraints.

Example 2: Gage Control of a Polymer Film Process. We considered the gage (cross-directional
control) of a 26-lane polymer film process with 26 actuators. We used the following model for our
simulation:

A=09I, B=(I-A)x*K,
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Figure 8.1: Input Profile for Example 1

where the steady-state gain matrix K was extrapolated from data obtained from a 3M polymer film
pilot plant. For this example, the dimension of the state n is 26, and the number m of inputs is 26. The
state [z]; denotes the deviated film thickness in the jth lane, and the input [u]; denotes the deviated
position of the jth actuator.

The actuators were constrained between the values of 0.1 and —0.1, while the velocity of the
actuators was constrained between the values of 0.025 and —0.025. Since a large difference between
actuator positions can create excess stress on the die, we imposed the following restriction on the change
in input from stage to stage:

|[u]1 —[u]j,1| < 0.05, 1=23,...,m.
We chose the tuning parameters to be
Q=I R=1I, S=1.

The matrix () was obtained from the solution of (6.19). The parameters z and Z are vacuous, since there
are no soft constraints on the state. We chose a horizon of N = 30 to guarantee that the constraints
were satisfied on the infinite horizon. The interior-point method required 11 iterations. Figure 8.2 shows
the calculated optimal input profiles.

Example 3: Evaporator. Ricker et al. (1988) presented the following model for an evaporation process
in a kraft pulp mill:

1
30s+1 0
G(S) — 648s 2.7(—6s+1)
(305+1)(20s+1) (205+1)(5s+1)
—90s —0.1375(—4s+1)

(305+1)(30s+1)  (30s+1)(2.65+1)

The normalized outputs of the process are the feed level (y;), product concentration (y2), and product
level (y3). The normalized inputs for the the process are the feed level setpoint (u1) and the steam flow
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Figure 8.2: Input Profile for Example 2

(u2). The process was realized in block observer canonical form (Chen 1984) and sampled every 0.5
minutes. The dimension n of the state after the realization is 9, and the number m of input is 3.

Both inputs were constrained to lie in the range [—0.2,0.2], while the three outputs were con-
strained to lie in [—0.05,0.05]. A bound of 0.05 was also imposed on the input velocity. The controller
was tuned with

Q:I, R:I, Z:O, N:60

The matrix () was obtained from the solution of (6.19). A constant ¢; penalty of 1000 was sufficient
to force the soft constraints to hold when the solution is feasible. We simulated the controller with the
following state disturbance:

[z0]; = sin(j) + cos(j).-

The interior-point method required 18 iterations to solve the optimization problem. Figure 8.3 shows
the calculated optimal input profile, while Figure 8.4 shows the predicted output profile. Note that the
constraints for y» and ys are initially violated. The constraint for y, is feasible when & > 8 and the
constraint for ys is feasible when £ > 34. Increasing the ¢; penalty did not change the resulting solution.
Decreasing the ¢; penalty leads to less aggressive control action, but the constraints are violated for a
longer duration.

The computational times required by the structured interior-point approach and the naive
quadratic programming approach are shown in Table 8.1. Our platform was a DEC Alphastation 250,
and the times were obtained with the Unix time command. We used the value v = 0.995 in (8.11) as
the proportion of maximum step to the boundary taken by our algorithm.

For the chosen (large) values of the horizon parameter N, the structured interior-point method
easily outperforms the naive quadratic programming approach. For the latter approach, we do not
include the time required to eliminate the states. These times were often quite significant, but they
are calculated offline. For small values of the horizon parameter N, the naive quadratic programming
approach outperforms the structured interior-point method, since the bandwidth is roughly the same
relative order of magnitude as the dimensions of (8.20).
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Table 8.1: Computational Times (sec)
Example | Structured Interior-Point | Naive Quadratic Programming
1 3.80 23.78
2 20.33 276.91
3 2.01 25.32
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8.4 Exploiting Structure in Sheet and Film Forming Processes

Sheet and film forming processes often have large numbers of inputs and outputs. Film forming processes
with 30 actuators and more than 150 lane thickness measurements are not uncommon. The processes
that produce paper can have 100 actuators and over 400 lane measurements (Wilhelm and Fjeld 1983,
Kristinsson and Dumont 1996). Figure 8.5 details the layout of a generic sheet or film forming process.
The control objective is to regulate the gage or thickness of the film along the cross—direction. These
types of processes produce some challenging computational problems for the control engineer who wishes
to use constrained model predictive control to improve product quality. The advantages in using model
predictive control lie mainly with the constraint handling. Based on a process model, the optimal control
strategy will honor absolute constraints such as actuator travel limits as well as equipment preserving
constraints such as spatial travel limits between adjacent actuators to avoid die lip damage.

Actuators Sensor

Thickness

Machine Direction

Cross Direction

Figure 8.5: Schematic of film or sheet forming process.

The improved efficiency in the structured approach is achieved by tailoring optimization directly
to model predictive control. In particular, the structured approach identifies the staged structure of
the objective function and constraints, which is common to all model predictive control problems. By
further restricting the class of optimization problems, we can expect further increases in computational
efficiency. One particular avenue for sparsity exploitation is the structure of the model. For sheet and
film forming processes, this structure includes localized spatial dynamics and large time delays.

8.4.1 Exploiting Model Structure

In the structured formulation of the optimization problem discussed in the previous section, the model
class is restricted only to finite-dimension, linear time-invariant systems. By restricting our attention to
the cross-directional control of sheet and film forming process, we can further restrict the class of models,
which allows us to further structure the optimization for improved computational performance. The two
distinctive characteristics of the model structure for film and sheet forming processes are localized spatial
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dynamics and the large input time delay (Braatz, Tyler, Morari, Pranckh and Sartor 1992, Campbell
and Rawlings 1996).
We can compactly represent the time delay as the following discrete time state space model

Tpy1 = Az + Buyg_g (8.40)

It is straight forward to incorporate time delay in standard linear state space form by expanding the
state vector to incorporate the delayed inputs. However, for the structured optimization, it is preferable
to work directly with (8.40). If the dynamics of the process are relatively fast with respect to the
length of the time delay d, the process dynamics can be approximated as pure delay (A = 0) (Braatz
et al. 1992, Campbell and Rawlings 1996). The corresponding process model is then

Tpy1 = Pug_q

where P is the steady—state gain of the process.

If there are no dynamics in the process model, then the solution to the optimal control problem
would simply be the deadbeat control law uy = ugs for all k, where u; is the steady—state input target.
The addition of constraints on input and states would not alter the steady-state solution with the
exception of input velocity constraints. Letting u_; be the implemented input at time j — 1 and Au be
the rate of change constraint, the solution to the steady-state control problem is

up, = min{sgn(py — u_1)px,sgn(Pr — u—1)us}
where
pr =u_1 —sgn(u_1 —ug)(k + 1)Au

It is therefore not necessary to use quadratic programming to solve (6.11) when there are no dynamics
and M = 0 (i.e. no input velocity penalty). The only necessary computation will be the steady—state
target calculation (see Section 6.2), the cost of which is minimal.

In the case where process dynamics cannot be ignored or input velocity penalties are desired, it is
necessary to use quadratic programming to solve (6.11). We can minimize the computational cost of the
quadratic program by exploiting the structure of the state transition matrix and the input distribution
matrix. The dominant costs in the solution of Riccati equation (8.33a) are the Cholesky factorization of
BT, B + Rj_; and the matrix multiplications. There is no simple way to exploit the structure in the
Cholesky factorization. However, we can significantly reduce the cost of the matrix multiplications.

The flop count for multiplying two dense matrices U € R™*" and V € R™*" is approximately
2mrn (Golub and Van Loan 1983). However, the localized spatial dynamics and also the inherent
symmetry of sheet and film forming process (Featherstone and Braatz 1995) gives rise to sparsity and
structure which we can exploit in solving (8.33a). Structures that have been observed in the problem
data include the following:

1. Diagonal state transition matrices (A)

2. Diagonal penalty matrices (Q, R, M)

w

. Diagonal or banded constraints (D, Q)
4. Banded, centrosymmetric or Toeplitz gain matrix (P)

By exploiting the sparsity appropriately to avoid multiplications by zero, we can expect the computa-
tional cost to be subcubic in the state and control dimensions for a large class of sheet and film forming
processes.



166

Figure 8.6: Structure of Steady State Gain Matrix P

8.4.2 Computational Results

To gauge the potential benefits of exploiting the structured sparsity of sheet and film forming processes,
we consider three computational examples. In the first example, we investigate a process with 100
outputs and 50 inputs with saturation constraints on the input. For the second example, we investigate
a process with 100 outputs and 100 inputs with bound constraints on the input. In the third example, we
investigate the same process as the second example with the addition of the following spatial constraint

I[ul; — [ulj—1] <b, j€[1,m]

which is used to reduce excess stress on the die lip caused by large differences between the position of
adjacent actuators. In all three examples the following tuning parameters are used: @ = I, R = I, and
S = 0. The control objective for all three examples is to reject a sinusoidal state disturbance.

For all three simulations we assume a state space model of the following structure

A=095I, B=(I - A)xP,

in which the steady—state gain was extrapolated from a smaller model identified from a polymer film
pilot plant. While this model is not representative of all sheet and film forming process, it does possess
some of the characteristics features. The structure of the gain matrix for the 100 x 100 examples is shown
as the shaded picture in Figure 8.6. The gain matrix has an average bandwidth of 20. The tight band is
expected since it would be unlikely that a single actuator would be capable of influencing the thickness
of the entire sheet. Figures 8.7 and 8.8 show the calculated inputs and states for the first example.
Table 8.2 shows the computational times required for a single calculation of quadratic program
in (6.11) for the three examples with different control horizon lengths N using the commercial package
QPSOL (version 3.2) (Gill et al. 1983) as a representative dense optimization approach, the structured
interior point method (SIP) mentioned in Section 2, and a sparse structured interior point method
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Example | N | QPSOL SIP | SSIP
4 10 50.9 | 39.1 | 26.7

20 410.7 | 75.0 | 54.6

5 10 340.7 | 80.3 | 43.8

20 -1 160.8 | 89.5

6 10 470.2 | 1109 | 484

Table 8.2: Comparison of Computational Times (sec)

(SSIP) which, as its name suggests, exploits the structure and sparsity in the optimization data during
solution of the Riccati equation (8.33a). The computational times were obtained using the Unix time
command on an Alphastation 250. For the QPSOL experiments, the listed times do not account for the
time required to construct the optimization data. These times were often significant, but they represent
off-line calculations.

/
S
/

Figure 8.7: Optimal Input Profile for Example 4

As expected there are significant improvements in computational performance obtained by tai-
loring the optimization to the specific problem. The performance improvement increases with the size
of the problem. The computational cost increases linearly as expected for the structured approaches
while the cost increases cubically for the dense approach. For smaller problems (less than 100 decision
variable), QPSOL tends to perform or outperform the structured methods, since the structure of the
problem dominates the optimization algorithm only for problems of large scale.

The sparse structured approach is almost twice as fast as the structured approach for the three
examples, while it was almost an order of magnitude faster than the dense approach for the third
example. The performance improvements were obtained by recognizing the diagonal structure of A and
R, the banded structure of B, and the diagonal/banded structure of the input constraint matrix D.
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100

Figure 8.8: Predicted State Profile for Example 4

The changes to the structured optimization code only consisted of augmenting the matrix—matrix and
matrix-vector multiplication routines to account for the sparse matrix structures.

For the second example with a control horizon of 20, we were unable to construct the Hessian
for QPSOL due to memory requirements. In contrast, the memory requirements for the structured
approaches were well within our computation limits. The structured approach required data structures
on order of ten thousand elements as compared to data structures on order of one million elements
required for the dense approach.

8.5 Concluding Remarks

We conclude with four brief comments on the structured interior-point method for MPC. The first is that
the structured method presented is also directly applicable to the dual problem of MPC, the constrained
moving horizon estimation problem. In fact, the estimation problem will provide greater justification
for structured approach because long horizons N arise frequently in this context. However, we did
not investigate applying the structured optimization approach because the theory for linear constrained
receding horizon estimators is still in its infancy.

The second comment is that we can extend the structured method to nonlinear MPC by applying
the approach of this chapter to the linear-quadratic subproblems generated by sequential quadratic
programming. Wright (1993), Arnold et al. (1994), and Steinbach (1994) all apply a similar technique to
discrete-time optimal-control problems. While some theory for nonlinear MPC is available, the questions
of robust implementation and suitable formulation of nonlinear MPC have not been resolved. See Mayne
(1997) for a discussion of the some of the issues.

Third, since the computational cost of the proposed algorithm is O(N(m + n)?), systems with
large numbers of states and inputs can still present formidable computational challenges. Since large
systems tend to be sparse (that is, A and B tend to be sparse, while ) and R tend to be nearly diagonal),
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we expect substantial increases in computational performance by exploiting the sparsity in (8.20) through
the use of sparse matrix solvers. Since the sparsity tends to be structured in many applications as we
demonstrated in Section 8.4, different strategies are preferable for different classes of processes.

The fourth comment concerns time delays, which occur when more than one sampling period
elapses before an input u; affects the state of the system. In the simplest case, we can rewrite the state
equation (6.15a) as

Tpy1 = Azy, + Buyg_q, (8.41)

for the case in which the delay is d sampling periods. The natural infinite horizon LQR objective function
for this case is

1 oo
b= 3 Z(mf@mk + ui Ruy, + 231, ;Muy), (8.42)
k=0
where the cross-penalty term relates ug_q and z. Since the first (d + 1) state vectors zg,z1,...,xq are
independent of the inputs, the decision variables in the optimization problem are zg41,Zg4+2,... and
Ug, U1, - ... By defining
.Ci'k=.’l7k+d, k=071727"'7

and removing constant terms from (8.42), the objective function and state equation become

& = 1% (3T Q& + ul Ruy, + 287 Muy), (8.43)
To =g, Tpy1 = AT + Bug, £=0,1,2,.... (844)

These formulae have the same form as (6.14) and (6.15).

If no additional constraints of the form (6.15b) are present, a Riccati equation may be used
to solve (8.43), (8.44) directly, as in Section 6.3. If state constraints of the form Hzy < h or jump
constraints of the form —A,Auy, < A, are present (as in (6.11)), we can still apply constraint softening
(Section 6.3.2) and use the approaches described in Section 6.3 To obtain finite-horizon versions of (8.43),
(8.44). The techniques of Section 8.2.1 can then be used to solve the problem efficiently.

Difficulties may arise, however, when multiple time delays are present, since these may reduce
the locality of the relationships between the decision variables and lead to significant broadening of the
bandwidths of the matrices in (8.17) and (8.20). A process in which two time delays are present (of d;
and dy sampling intervals) can be described by a state equation of the following form:

E bl b Py I o

wi“ Asr Aa :ci By1 By Ui,dQ '

A problem with these dynamics can be solved by augmenting the state vector x; with the input variables
Uk—dy, Uk—dy—1, - - - » Uk—do+1 (assuming that d» > d;) and applying the technique for a single time delay
outlined above. Alternatively, the KKT conditions for the original formulation can be used directly as
the basis of an interior-point method. The linear system to be solved at each interior-point iteration
will contain not only diagonal blocks of the form in (8.17), but also a number of blocks at some distance
from the diagonal. Some rearrangement to reduce the overall bandwidth may be possible, but expansion
of the bandwidth by an amount proportional to (d2 — d;)m is inevitable.

Of course, we can also revert to the original approach of eliminating the states zg,z1,... from
the problem to obtain a problem in which the inputs wug,u1, ... alone are decision variables. The cost of
this approach, too, is higher than in the no-delay case, because the horizon length N usually must be
increased to incorporate the effects of the delayed dynamics. One could postulate that certain processes
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would be effectively handled by the standard approach while others would be effectively handled by the
structured approach. Perhaps the only solution is to exercise engineering judgment to decompose the full
control problem into smaller problems without large delays and treat the neglected delays connecting the
decomposed systems as disturbances. This issue remains unresolved and is a topic of current research.
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Chapter 9

Constrained Linear Disturbance
Attenuation

9.1 Introduction

As we have illustrated in the previous chapters, the theory of model predictive control (MPC) is rel-
atively mature; many practical and theoretical issues have been resolved. There also exists a host of
survey papers on MPC; examples include (Garcia et al. 1989), (Kwon 1994), (Mayne 1997), (Lee and
Cooley 1997), and (Mayne, Rawlings, Rao and Scokaert 1999), as well as the book by Camacho and
Bordons (1998). In the process industries, MPC is a popular tool for advanced control and thousands
of applications have been reported (¢.f Qin and Badgwell (1997, 1998)). While the popularity of MPC
is widely of documented (particularly in process control), many important issues still have not been
satisfactorily resolved. One of these issues is robustness. Numerous authors have addressed the issue of
robustness in MPC. An incomplete list comprises of the following articles: (Campo and Morari 1987),
(Allwright and Papavasiliou 1992), (Zheng and Morari 1993), (Genceli and Nikolaou 1993), (Kothare,
Balakrishnan and Morari 1996), (Lee and Yu 1997), (Badgwell 1997), (Chen, Scherer and Allgéwer 1997),
(Magni 1998), (Chen, Scherer and Allgower 1998), and (Scokaert and Mayne 1998). While these articles
present promising results, they all suffer from two drawbacks. None of the articles listed above discuss
stabilizing strategies for output feedback in a state-space setting, and all require the solution of a min-
imax problem in real-time, a computationally demanding problem that often is not well-posed. Some
exceptions that bypass the need for a minimax formulation and rely on alternative formulations not
based on worst-case analysis are (Michalska and Mayne 1993), (Polak and Yang 1993a), (De Nicolao,
Magni and Scattolini 1996), (Magni and Sepulchre 1997), (Santos and Bieger 1999), and (Zheng 1999).

Of importance in the context of this chapter is the constrained disturbance attenuation problem,
or H, problem (Chen et al. 1997, Chen et al. 1998, Magni 1998)), where MPC is formulated as a dynamic
game. Using a moving horizon approximation, MPC avoids the solution of a Hamilton-Jacobi-Bellman-
Isaacs equation by repetitively solving an open-loop dynamic game. One strength of the dynamic game
approach is the relationship to H control (c.f. Bagar and Bernhard (1995)). This relationship allows
one potentially to draw on results and intuitions from H., control. Furthermore, many robustness
problems can be embedded in the disturbance attenuation problem (i.e. the Ho problem) using the
classic M — A structure (e.g. Skogestad and Postlethwaite (1996)).

In this chapter, we examine the disturbance attenuation problem in linear MPC using a dynamic
game approach. However, unlike previous work, we address two unanswered issues: the real-time so-
lution of minimax problems and output feedback. By examining sufficient conditions for saddle-point
solutions, we reformulate the infinite-horizon dynamic game as a finite-dimension quadratic problem.
Using forward/backward dynamic programming, we establish a separation principle, thereby solving
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the output feedback problem. Our work relies heavily on the results of Bagar and Bernhard (1995).
Their work motivated and provided many of tools necessary for our investigations into the constrained
problem.

The chapter is organized as follows. We begin by first defining the disturbance attenuation
problem in Section 9.2. In Section 9.3 we formulate the disturbance attenuation problem as a dynamic
game. In Section 9.4 we provide a receding horizon formulation for the disturbance attenuation problem.
In Section 9.5 we discuss the perturbed reachability problem and then characterize the admissible class of
disturbances in Section 9.6. We conclude by summarizing our results in Section 9.7 and then discussing
some limitations of MPC and open-loop feedback control in Section 9.8.

9.2 Problem Statement

Consider the closed-loop response of the following discrete-time linear system

Trr1 = Azp + Buyp + Gug, (9.1a)
yr = Cumzp+ By, (9.1b)

where zp € R?, up, € UC R™, wy € R?, yi, € RP, and the matrix E is non-singular, subject to feedback
law

:uk(yoa"' yYk—1,5 HOs - - - ,/J/k_l) = Ug-

We assume the pair (A, B) is controllable, the pair (A4, C) is observable, and the set U is closed, convex,
and 0 € int U. State constraints are ignored due to the host of technical difficulties regarding feasibility.
Because the inputs are constrained (U # R™), the controller cannot necessarily stabilize the entire
state space R™. Rather, a feedback controller may stabilize only a subset of the state space X C R”
(for stable systems, the entire state space is stabilized trivially). To account for the inherent physical
limitations of the controller, we need to restrict the class of admissible disturbances. Given v > 0, let
D(v) C R* x I5(RI*TP) denote the admissible class of disturbances, where D(y;) C D(2) when v5 < 71
and

lim D(y) = R x I(R?1?).

v—0
We say the disturbance sequence is admissible if (zo, {wk, vr}32,) € D(v). A system is said to have
finite [5-gain < « if there exists a constant v such that for all N > 0 and admissible disturbances, we
have

N—1 N—1
T T 2 T T T—1
E xy, Qr + uyp Rup <7y E wy Wi + vy v 29Il zo |,
k=0 k=0

where the matrices (), R, and II are symmetric positive definite. We say a system has minimal [5-gain
< #v if the system has finite l5-gain < <y, and there exists no v* < y such that the system has finite />-gain
< v*. We define the constrained disturbance attenuation problem as determining the feedback law

/‘Lk(yoa"' sYk—1, MO, - - - 7,“49—1) = Ug

that achieves minimal finite l>-gain closed-loop performance and satisfies the constraints: uy € U. Note
that the controller is nonlinear even though the model (9.1) is linear due to the addition of the inequality
constraints. As a result, frequency domain analysis is not applicable to the constrained disturbance
attenuation problem. Rather, we need to rely on tools from nonlinear analysis, in particular dissipative
systems theory and game theory.
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9.2.1 Notation

The set of positive real numbers is denoted by R, . Let z(k;z2,{u;},{w;}) denote the solution of the
system (9.1) at time k subject to the initial condition zq = 2z at time 0, input sequence {u; }f;&, and
disturbance sequence {w; f;é. Let ||z|| = VzTz and I5(R™) denote the space of all sequences {ay} in
R" for which >, |las||* < co. For € > 0, B := {z : ||z|| <€}. Let a V b := max{a, b}.

9.3 Dissipative Systems and Dynamic Games

The theory of dissipative systems (Willems 1972) provides a general framework for analyzing the distur-
bance attenuation problem for nonlinear systems. From a design perspective, dissipative systems theory
allows one to recast the disturbance attenuation as a dynamic game (e.g. van der Schaft (1996)). Because
of our interest in a constructive strategy for output feedback, many of our ideas are motivated by the
work of James and Baras (1995). While they use dissipative systems theory to establish a closed-loop
system has finite [o-gain, their approach is grounded in the notion of an information state, and in many
ways analogous to the work of Bernhard (1995). In this section we discuss infinite-horizon MPC.
Fix v > 0 and consider the following open-loop zero-sum infinite-horizon game at time 7'

P(T): ¢ = min max {o({ur}, (xo, {wk,vx)) : ur € U, (zg, {wg,vr}) € D(7)}

{ur}ilo (wo,{wk,vk }2‘;0)
subject to the history constraint, for &k < (T — 1),

Up = Uy, (9.2a)

yr = Czp + vg. (9.2b)

where the objective function is given by

1 oo
o({ur}, (zo, {wr, v })) == Yzt Quy, + uj Rug — 7 (w wi + v} vp + g T 3p)
2 k=0

and zp = (k; 2o, {u;}, {w;}). The solution to P(T), assuming it exists, are the sequences {uj ,}72,

and (x(";|T, {wiirs v,’;‘T}g‘;O). Feedback is introduced by solving the dynamic game P(T') at each time T,
and implementing only the input u}lT. When the measurement yr becomes available, we solve P(T +1)
and then repeat the process. The feedback law is given by ux(-) = u,‘;l x- The history constraints are
important in our formulation, because they allow us to introduce output feedback into the problem. At
time T, the controller has observed the system response {yk};{:—& and, as a result, the class of admissible
disturbances are restricted.

Proceeding in an informal manner, let us begin by assuming for simplicity that D(y) = R™ x
I3(R7%?) and U = R™. Due to the open-loop structure of the game P(T'), a solution may not exist. This
limitation holds often regardless of our choice of D(7). If we assume the infinite-horizon problem is the
limit of maximums over finite sequences (zg, {wy, v }po ) and rely on standard linear quadratic theory
for the existence of a minimum, then

¢;‘ = lim min max ¢({uk}7 (1'07 {wk:vk}))a

N—=oo{ur}iZo (zo,{we,vktp ')

where, for fixed N, {wg,vr}32y = 0. To guarantee the problem is bounded, we require ¢({ux},-) is
concave for all {uy}. This condition translates into rank condition, for k =0,... ,(N — 1),

I - GTS,G > 0,
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where
Sy = P
St = Q+ AT (Skt1 + G Ski1(7? = GT8111G) 1Sk 41G) A,
and P denotes the solution of the algebraic Riccati equation:
P=Q+ A" (P-B"P(R+B"PB)"'PB) A.

If we choose v > 0 sufficiently large, then we can satisfy the rank condition for all N only if the state
transition matrix A is has no eigenvalues on or outside the unit circle. We cannot expect a solution
exists when the matrix A is unstable: the “adversary” can always choose a disturbance that trumps the
open-loop control.

Example 9.3.1 If we optimize over feedback policies (closed-loop control) rather than fixved controls
(open-loop control), then the existence conditions are less restrictive. Consider the system

Try1 = T + U + Wi

and tuning parameters Q =1, R =1, and P = 1. The following table compares the minimum value of
v as a function of the horizon length N for open-loop and closed-loop control.

N Ymin Ymin
Open-loop  Closed-loop

5 2.9 1.41

10 6.1 1.42

15 9.8 1.42

50 31.6 1.42

00 00 1.42

The minimal value of v sufficient for existence to a problem with a horizon N is roughly

The inability to have systems with unit eigenvalues (i.e. integrators) is especially restrictive from a
practical standpoint because of the desire to add integral control. Our discussion of the infinite horizon
regulator is for illustrative purposes, so we ignore the technical issues and tacitly assume existence. We
return to issue of existence in Section 9.4.

Before demonstrating that the MPC achieves [2-gain < <, we introduce a forward-backward
dynamic programming decomposition of P(T"). An interesting discussion of forward-backward dynamic
programming in an abstract setting can be found in (Verdu and Poor 1987). The details of the argument
are given by Bernhard (1995). We begin by first introducing the arrival cost function. We say a
disturbance sequence (zo, {wy, vx }} 5 ) is output admissible at time 7T if it satisfies the state equation
(9.1) subject to the (fixed) data {uj,, Yk }r—g - Let Qr denote the output admissible set of disturbances

Qr = {xo,{wk,vk}fz_ol sy =Cx (k;xo,{u;lj},{wj}) +Evk}

and

T-1

1
Zr({uk}, (®o, {wk, v })) := 3 Z foxk + u;‘gRuk —~2 (w,{wk + v,{vk + wgﬁﬂflxo) .
k=0
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For all z € R", we define the arrival cost at time T as

Zr(z) = max {Zr({ur}, (o, {wr,vr})) : (o, {wr,vr}) € Qr, zr = 2},

(-WOa{wkyUk}kN=_ol)

where it is understood that Zy(z) := —y221TI 1z, Arrival cost Zr(z) is defined for all z € R™, because
of the form of the observation equation: yr = Cxy + vi. Note that the input constraints uy € U are not
present in Z7(-). We justify their omission on the following grounds: only the controls need to satisfy
the constraints, and the controls are fixed for times less than T'.

Likewise, we define the cost to go as

Vr(z) = min  max {V({ue}, {wr}) ; 25 := 2(k; 2, {uj}, {w; D} (9:3)

{un }ilo {wrsvr}ilo
where
1 oo
V({ur}, {w;}) := 3 Z z¥ Qzy, + uj Ruy, — Y wiwy.
k=0

We ignore the effect of the output disturbances {vi} in Vr(2) as they do not affect the state directly;
the output disturbances arise only in the estimation part of the control problem, not in regulation. So,
we have the equivalence

V({ur} {w;}) = V({ur}, {wg, ve}),

1
=3 >z Qui + uf Rug — v (wi wy, + vi vg) -
k=0

Using the result of Bernhard (1995), we know that if
Zr = argmax Zr(z) + Vr(z), (9.4)

where #7 denotes the H,, state estimate given the data {yx};_,, then, assuming the problems (9.4)
and (9.3) have unique solutions (exact conditions are stated later), the sequence

{“Z|T}?=T
solves P(Zr,T) and vice-versa. In particular,
o = max Zr(z) + Vr(z2).

This result is significant, because it allows us to establish certainty equivalence.

When we implement MPC, we use, for computational purposes, a separation principle rather
than certainty equivalence. In many ways, we can view the separation principle as the information state
approach of James and Baras (1995). By application of forward dynamic programming (see Appendix C),
we know

Zr(z) = ~37*(z — #)' T (s ~ 1) + a
where « is a constant,
M1 = A (I + CT(BET)'C —v7%Q) AT + GG,
subject to the initial condition IIy = II, and

Fpp1 = AZp + Buj + A (I + CT(EET)™'C —772Q) (v Q% + CT(EET) " (yx, — C#4))
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with Zo := 0. As we prove in Appendix C,
Ir = max Zr(2).
To obtain a separation, we can reformulate P(T) as the following dynamic game:
¢7 = maxVr(z) —(z — ir) 17 (z - ¥7) + o,

= min max ¢oo({uk}: (370, {wk}zozo) 7:Z'T) t+a,
{ur 1220 (zo.{we }32,)

and
dr({ur}, (wo, {wr}p2o) ,2) 1= D of Quy, + uf Rug —v* (wi wi + (wo — 2) Tz (2o — 2)) -
k=0

To demonstrate infinite horizon MPC achieves finite [5-gain < v closed-loop performance, con-
sider time T' = 0 and suppose the solution {uj,};2, and (w(’;,{w,’;m,v,’glo}?’:o) exists. Because the

solution {uj ;}72, and (xo, {w;;u:”/tu}l?;o) at time j > 0 is feasible at time T' = 0, we know

v

o({uf o} (w0, {wi ;v 1)),
o({ug;}- (w0, (w5, 0%51)),
= ¢

The first inequality results from the addition of the history constraint in P(T") and second inequality
results from optimality. We may view the second inequality as our dissipation inequality. Using the

95 = d({uzo}, (w0, {whi0,v70}))

v

dynamic programming decomposition
¢j = max Z;(z) + V;(2),
z

we have by optimality that, for all j > 0,

*
7

%0,
0.

max Z;(z)

IA

IANIN

The last inequality is proved in the Appendix C. From the above inequalities, we know that for all
disturbances (zo, {w;,v; ;?;&) € Qr

T-1

1
2 Z zi Q. +up Ruy, — 72 (wiwi +vfvp + 23 T tag) <0,
k=0
or that
T-1
z3 Qzy, + uj Ruy <
k=0
T-1
o (Z wi wy, + v vy, + xOTHIx()) .
k=0

Because we have limited our discussion to stable systems, infinite-horizon MPC achieves finite l5-gain
< v for all (zo, {vk, wr }32,)- In other words, the admissible class of disturbances are all square summable
sequences, i.e. D(y) = R™ x lo(RIT?).
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9.4 Finite-Horizon Formulation

In the preceding section we discussed the infinite-horizon formulation of constrained MPC. In addition
to computational difficulties, application of the infinite horizon formulation is limited to systems with
eigenvalues strictly inside the unit circle. To overcome these difficulties, we need to consider a finite-
horizon formulation. Consider a finite-horizon game with an open-loop information structure of the
form

Pn(z,T,7) : ¢*N($7T) = min max ¢N({uk}7($07{wk});xaTa 7),

N EUN (zo,{wk}fj:_ol)
subject to the system
Tr+1 = Azy, + Buy + Guy,
where the objective function is defined by

(I)N({uk}a (Il'o, {wk}) ;.’L‘,T, 7) =
N-1

Z zp Qzy, + uj Ruy, + rx Prn — 72 (wiwy, + (w0 — )" II7 (20 — 7))
k=0
and the matrices @), R, P, and II1 are positive definite.
To guarantee a solution exists to the dynamic game Py (x,T, ), we need to choose v sufficiently
large such that the following rank conditions are satisfied (Bagar and Olsder 1999),

v2I —GTS,G > 0, k=0,..., N—1
and
Amax (IT7S0) < 72
where
Sy = P,
Sk = Q+AT(Skt1 + Sk+1G(Y? — GTS11G) G Spy1) A.
We establish the existence of v in the following proposition.

Proposition 9.4.1 If we assume U contains the origin, then, given N > 0 and T > 0, there exists
5 € T such that for all v > 7, x € R™, a solution exists to Pn(z,T,~).

Proof.  As the set U is non-empty, it suffices to establish the existence of a constant « such that
d({ur}, ;) is strictly concave. If we write out the concavity condition explicitly, then this condition
translates into the following matrix inequality:

v?Q! — GPGT >0, (9-5)
where
Q=diag([Or I --- T]),
and
A G P
A2 AG G Q
G= . . . ) P=
AN AN-lg AN—2g ... @ Q

If we choose ¥ > Amax (QGPGT) V Amax (II7Sy), then the matrix inequality(9.5) is satisfied. O
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Remark 9.4.2 If we assume the pair (A, C) is observable, then there exists a minimal positive definite
solution Py, to the generalized algebraic Riccati equation

My = AT} + CT(EET)™'C —7y72Q) AT + GG™.

If we choose Il = I, then I, = Il for all k > 0. In this case, there exists a v > 0 such that a solution
exists to Py (z,T,v) for all z € RN and T > 0.

Remark 9.4.3 Suppose v > 0 is sufficiently large such that a solution exists to Pn(z,T,~y) and consider
the following compact notational representation of the dynamic game Pn(z,T,)

Pn(z,T,7) : minN mv%x xTOx +u"Ru— w'Tw
Uel

subject to constraint

x = Az + Bu + Gw.

The max is unconstrained, so we can solve for w analytically, and, consequently, we are able to refor-
mulate the dynamic game Py (x,T,~) as the following quadratic program

Pn(z,T,7) : Join, mnHrn +Clry
where
# = R+ (Q+0G(r-6706) 6T Q)R
¢ = B (Q+0QG(r-6"Q6) ' 6 Q) As

The cost, therefore, to “robustify” MPC is negligible.

9.4.1 The Terminal Cost and Constraint Set

For some v > 0, suppose P(y) is the minimal positive definite solution of the generalized algebraic
Riccati equation

P(y)=Q+AT(P~'(7) + BR™'B" —y7°GG") ™' 4 (9.6)
satisfying the following conditions
A Anax(GP(1)GT) < 7%
B :Q+ATA"TP(y) (BR BT —y2GGT) P(y)A~! > 0,
where

A =TI+ (BR'BT —42GGT)P(y).

Under the stated conditions, condition A is sufficient to guarantee the matrix P(v) solves the infinite
horizon game in that it generates the minimal value function for the stationary Isaacs equation (Bagar
1991)

2" P(y)z = minmax {27 Qz + u" Ru — v*w{ wy, + (Az + Bu + Gw)' P(y)(Az + Bu+ Guw)} .
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The optimal solution is

w* = —RYV2BTP(y)A ‘Az,
= Kz,

w* = Y 2GTP(y)A~'Az,
= Kyx.

The feedback law K, is the state feedback H, controller (Doyle, Glover, Khargonekar and Francis 1989).
As the robustness margins increase as v decreases, one typically calculates K,, iteratively by reducing vy
until condition A is violated.

Condition B is necessary to guarantee that the matrix P(vy) satisfies the following Lyapunov
inequality

P(y) — AA"TP(y)A"1A >0, (9.7)

which is precisely a restatement of condition B. Why is the inequality (9.7) useful? The answer becomes
evident when we consider the consequences of the following proposition.

Proposition 9.4.4 Suppose P(v) is a minimal positive definite solution of (9.6) satisfying conditions
A and B. If 2T P(y)z < a, then 21 P(y)z4 < a, where ;. = (A+ BK, + GK,)z = A" 'Az.

Proof. As the matrix P(y) is positive definite, it suffices to demonstrate
.’L‘TQZ' + u*TRu* _ ’)’211)*TQ11)* > 0

where the vectors u* and w* denote the optimal solution to the infinite horizon game. In particular, we
know v* = K,z and w* = K,w. If substitute in K, and K,,, then one obtains condition B, and the
proposition follows as claimed. a

Remark 9.4.5 Condition B is equivalent to stating that the matriz P(vy) generates a (stable) Lyapunov
function for the system xy 1 = A~'Axy. While this system is stable (Basar and Bernhard 1995), it
does not appear B is automatically satisfied. Condition B is satisfied when BR~'BT — v72GGT > 0.
Obviously, this condition is very restrictive. In the context of developing an invariant set, we can replace
the level set with a Gilbert and Tan set (Gilbert and Tan 1991) as the system w1 = A 1Az is
stable (Bagar and Bernhard 1995). Consequently, condition B is not necessary.

A set Z C R is positive invariant for the dynamic system X, if for every initial state zg € Z,
the subsequent motion z, k > 0, belongs to Z. A set Z C R" is Y output admissible for the dynamic
system X, where Y C R", if for every initial state =y € Z, the subsequent motion z, k > 0, belongs to
Y.

Consider the level set
Ly={z : 27P(y)z < a},

where a > 0. Condition A and B, in light of Proposition 9.4.4, guarantee the level set L, is positively
invariant for the dynamic system zj,; = A~'Azy. Consider now the constraint set

X={z : K,z € U}.

If 0 € int X then there exists € > 0 such B, C X. If we choose
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then L, C U and the level set L, is X output admissible. One may also construct the maximal output
admissible set using the Gilbert and Tan (1991) algorithm (see Remark 9.4.5).

The invariant set is important, because it allows us to establish MPC has finite [»-gain< .
In particular, if z(N;25{uj},{wj}) € Lo C U, then Py(-) = Pxo(-). We are able to bypass the
existence issue, because the input sequence {u}3° \ is now replaced with a sequence of feedback policies
{pe(-) = Ku(-)}32 n- One can demonstrate there exists a y > 0 such that z(N; z5{u}}, {w}}) € Lo C U.
However, there is one significant caveat: invariance as we have constructed it is with respect to the
worst cast disturbance wy = K,x. Our construction immediately begs the question “what else are we
invariant to.” We address this question in the next section.

9.5 Constrained reachability of perturbed systems

Let v > 0. We say the level set £, is v-strongly reachable at time N from the origin if there exists
an input sequence {uy}p_, € UV such that 2(N;zo, {u;}, {w;}) € Ly for all (zo, {wi}ry') € Dn(7),
where the set of admissible disturbances Dy () is an ellipsoid of the form

N-1
_ a
Dn(y) = {(woa{wk}g_o) : E wj wy, + woIl " my < $}7
k=0

The reader is directed to Delfour and Mitter (1969) for a general discussion of the open-loop reachability
problem.
Consider the following dynamic game of the pursuit-evasion class

N
R : 0 = min max zXPzy —~2 wka,
~n(7) ~n(7) (NI CUN (N NTTN =7 ; k

where zn = (N;2,{u;},{w;}). Let {u}} denote the solution to Rx(7y). For a solution to exist to
Rn(7y) (Bagar and Olsder 1999), we require that -y satisfies the following matrix inequality

vI>GTS,G, k=0,...,(N—1) (9.8)
where
Sy = P,
Snv-1 = AT (Sy — SnG(¥* — GTSNG) G SN) A.
Our claim is that if a solution exists to R () for some v > 0, then the set £, is y-strongly reachable
at time N.

Proposition 9.5.1 Suppose the pair (y,N) guarantee a solution exists to Rn(v). Then, there exists
an input sequence {uZ}kN:_O1 solving the dynamic game Ry () such that z(N;z,{uj},{w;}) € Lo for all

(o, {w;}) € Dn(vy) and the set L, is y-strongly reachable at time N.

Proof. Existence of a solution follows from the convexity and strict concavity of the game Ry (7).
Writing out the solution to the game explicitly, we have by optimality

N-1
N = max | a(Nsao, 3} ) PN, {u) ) = o (2 wlwy +x£nxo> ,
T031\Wk S =0 k=0

vV

N-1
o(N; Zo, {uj}, {@; 1) Pa(N; Zo, {uj}, {w;}) - 7* (Z Wy, Dg + ﬂ?gﬂfo> ;
k=0

for all (Zo, {@x} o) - (9.92)
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Let
ﬂ = SL'(N, .’L'S, {U;}, {w;})TP:L'(N, .’L’S, {u;}a {w;})

and 6 = a— (3, which is non-negative by assumption. Suppose the contrapositive and assume there exists

some (7o, {wr}y') € Dn(z,7) such that

2(N;zo, {uf}, {w;}) T Pe(N; 20, {uf}, {w;}) > e
Let

N-1
Oy (7) = 2(N; 20, {uj}, {w; DT Pe(Ns 20, {u;}, {w;}) —+* (Z wi W, + wgﬂxo> :
k=0

By assumption, we obtain the inequality

N—-1 N—1
On () +7° (Z wi wi + wgﬂwo> > On(Y) +7° <Z wiTwj, + wSTﬂwS> +é=a.
k=0 k=0

By the inequality (9.9a), it follows necessarily that @n(y) > @\ (7). However, these two inequalities
contradicts the main assumption: that is

N—-1 N—-1
) (z wTwe + xg’nxo) S (O(3) = B() +* (z wiTui + %Tnmo) fima
k=0 k=0

and, therefore, we obtained the desired result. O

Proposition 9.5.1 is significant, because it characterizes the class of disturbances MPC can reject. As
we prove in the next proposition, our characterization of the admissible class of disturbances is not
conservative.

Proposition 9.5.2 Suppose the pair (v, N) guarantee a solution exists to Ry (7y) and let {uZ}g:_Ol denote
the solution to Rn(v). Then, for all € > 0, there exists a sequence (Zo, {u?k}g:_ol) such that

N-1

v? (Z wF g +x§Hm0) <a+e
k=0

and z(N; Ty, {u;‘}, {w;}) & La.

Proof.  First note that {u}};_o' = 0. To prove this claim, suppose {ui};_, = 0 and consider the
following.

—  max {—72 (Z wiwy + mgﬂmo> : o(N; o, {uj}, {w; ) Px(N; 39, {0}, {w;}) = 0}

N-1
wo,{wk}k=o k=0

N—-1
= min {%(szwwwgnwo) 2IU(N;$0a{u;}>{wj})TP$(N;$Oa{O}a{wa‘})=0}=0-

EO,{wk}LV:_ol k=0
As the matrix P is positive definite, we cannot improve on the choice {u;} = {0}, and {u] =0
(though the solution may not be unique). Now let

N-1
c= min {72 (Z wkka +on1'[$0> : ¢(N; o, {u;‘}, {wj})TPw(N;xo,{u;-‘},{wj}) = a}

xOv{“’k}Q’:_ol k=0
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and u = (x, {wd}5') denote the solution to the minimization. As the system (9.1) is linear, there
exists a matrix L such that

o(N; g, {u}}, {w}}) = Lw.
and
wlLTPLw = a.
If we choose w® = §w for some & > 1, then
wTLTPLw® = §%a > a.

From proposition 9.5.1, we know that ¢ < a. If we choose

c+e
0 < .
c

then the proposition follows as claimed. a

If there are no constraints (¢ = oo and U = R"), then the set of admissible disturbances
Dn(v) = RN for all v > 0 as expected. Without any limitations the controller can respond in equal
magnitude to any disturbance. This distinguishes unconstrained from constrained control.

One heuristic for v is that is scales roughly as O(EkN:1 EAmaxAF). One may view, therefore, y
as a bound on the open-loop dynamics of the system (9.1). Open-loop control, consequently, does not
improve the admissible class of disturbances Dy (7). One improve the “robustness” of a system only
if feedback is employed. However, as a consequences of eschewing dynamic programming, the theory
and application of MPC explicitly relies on the open-loop properties of control. The calculated margins
of MPC are consequently the same as pure open-loop control. We discuss these issues further in the
conclusion.

9.6 Admissible Class of Disturbances

In the preceding section we characterized the admissible class of disturbances for the simple problem of
driving the state into the level set L£,. In this section, we extend those results to MPC.
Consider again the dynamic game

Pn(z,T,7) : ¢n(2z,T)=  min max on({ur}, (o, {wi, v }); T, 7)

{ur 2o €UN (o, {wk, vk thsg')

Suppose N and « are chosen such that a solution exists. One choice for the admissible class of distur-
bances is then

oo

_ e%

200 = { (o) + Yoo+ oot af < 5
k=0

The notation (zo, {wk}g:_ol) € D(v) is used to denote (zo, {wo,... ,wn-1,0,0,...}) € D(v).

Proposition 9.6.1 Suppose the pair (v, N) guarantees a solution exists to Pn(x,T,~) for all x € R™.
Then, the state x(N; zo,{u}},{w;}) € Lq for all (o, {wir}n') € D(7) where {u}} denotes the solution
to Pn(0,7).

Proof. The proof is omitted due to the close similarity with the proof of Proposition 9.5.1. O
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Let {u; k}kN:_Ol denote the solution, assuming it exists, of Pn(z, j,7) and uf := Ug -

Proposition 9.6.2 Suppose the pair (v, N) guarantee a solution exists to Pn(z, T, ) for all z € R™ and
T > 0 and the matriz P(y) is the minimal solution of (9.6) satisfying conditions A and B. If L, C U,

then

for all (zo, {wi}Y_o) € D(7) and the closed-loop system has finite l>-gain< 7.

Proof. Let (Z,{wr}32, € D(7v). We proceed using an induction argument. Using the properties of the
matrix P(v), we have

vV

v

vV

v

N-1

min max Z 21 Qxy + ul Rup + x5 P(y)zN
{uk};::olEUN (zo,{wk}i";f) k=0

N-1

—? ( E wiwy, + v vy + :L’OTHla:())
k=0

min max min max ukRun + QTN + Th 11 P(Y)ZNt1 — Ywiwn +

{ur}oso UN (zo{wi}psy) wn€EU wn

N-1 N-1
Z Tt QT + uj Ruy, — +* Z wi wg, + v v, + 2 T g
k=0

: T T T
min max 73, Qrp +up Rup + x5 P(y)TN41 —
{0 €UN (zo, {wr}}_0) ,;)

N
72 (Z wi w + v vy + xoﬂlx()) ,
k=0

(as min max f(z,y) > maxmin f(x,y))
T Yy Y T

N
- T T T
min max zj, Qzr + uj Rug + 2y P(Y)2Ng1—
{ux o1 €UN (2o {wi },) {kzzo "

N
52 (Z w,fwk + v,{vk + xol'[_lxg) D ug = ug} ,

k=0

N
. T T T
min max E z, Qzy + uy, Rup + 2y P(Y)eN41—
{ur }7_, €UV ({wk}zlcv:1) {k:() i

N

y? (Z wiwy, + vy, + xoﬂ_lmo) D ug =ug,yo =CZ+ ’Uo} ,
k=0

¢N(5:1 ) ’7)7

(by the properties of IIy).
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Let us assume ¢n(Z;,5 — 1) > ¢n(Z;,7) and consider ¢y (&5, J).

N+4j—1

on(Zi,y) = min max 21 Qxy, + ul Ruy + 25 P(y)zN
e ! ) {37 1 eUN (zo{wi ko771 ; k k NP

k=j
N—1
- (Z wi wi, + v v + (5 — &) T (25 — fﬁj))
k=0
N+j—1
min max Z =1 Qzy, + uj Ruy, + rnP(y)zN

{w} 77 71 €UN (zo,{wr,va g ) k=j

N+j-1
—? ( E wi wi + v vi +:c0TH1x0> —aj :
k=0

{ur}i=y = {ulHs } ,

v

{yrYizt = {Ca(k; 2, {ud}, {@}) + vk it

If we let {u]}N=! and (zj , {wi}kN:_Ol) denote the solution of Pxn(Z;,j,7), then it follows from Proposi-
tions 9.6.1 and 9.6.1 that

2(N; 27, {u]},{w]}) € La-

Therefore, it follows from the above arguments that ¢n(&;,5) > ¢n(&j4+1,5 + 1) and the proposition
follows as claimed. O

As with the reachability problem, one may view the admissible class of disturbances as the set
of disturbances such that the free evolution of the system does not leave level set £, at time N. The
remarkable fact of this statement is that nowhere does feedback enter the problem. The calculated
stability margins are solely open-loop margins. We emphasize that these are theoretical margins; the
actual margin are much better. We elaborate on this idea in the Conclusion.

9.6.1 Remarks

When we implement MPC online (see Chapter 6), we typically vary the horizon length such that

z(N; 2, {u;}’ {0}) € O,
where Z denotes our current measurement of the state and {uZ}iV:_Ol denotes the open-loop optimal
control. It is possible to establish the existence of an N and v such that z(N; 2, {u}},{w}}) € O.
However, this result is meaningless, because the horizon length N, attenuation level v, and the initial
condition & are intimately related. If we increase the horizon length N, then v increases and the set of
admissible disturbances shrinks. Furthermore, v is a function of the initial condition &. If the initial
condition is relatively small (i.e. ||Z|| small), then «y, and admissible class of disturbances, is relatively
large. If the initial condition is relatively large (i.e. ||Z|| large, then ~ relatively small. So, loosely
speaking, the controller is robust only if it is idle. As we have emphasized, this is a consequence of
open-loop feedback control. Consequently, when we implement “robust” MPC, we need to fix N and ~.
Otherwise, we are unable to quantify stability margins a priori.
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9.7 Summary

For fixed N and +, we formulate robust MPC as the following open-loop finite-horizon dynamic game

,PN(.’L',T,’Y): ¢*N($7T): min max i ¢N({Uk},($0,{Wk}),.CL',T,’)/),

N EUN (20, {we}ny')

where the objective function is defined by

(I)N({uk}ﬂ (.CL'(), {wk}) ;$7Ta 7) =
N-1

Z zp Qi + uj Ruy, + s, P(v)zn — ¥ (wiwk + (w0 — &7) 7" (z0 — 31))
k=0

and the estimator is defined by the dynamic system
Fp41 = AZy + Buf + A (I, + CT(EET) 1C —772Q) (v Q% + CT(EET) (yr, — C#y))
where
M1 = A (I + CT(BET) 10 —y72Q) AT + GG,

subject to the initial conditions Iy = IT and %y = 0. If {uk(;T:T)*}ch:_Ol denote the solution to Py (Z7,T, ),
then the feedback law is defined as

BT (Yo, - -+ s YT—1, 05+ - - 5 T—1) := UG (ET).
If IT;, satisfies the matrix inequality
Y —Q >0 k>0,

and P(v) satisfies conditions A and B and the matrix inequalities

v2I - GTS,G > 0, k=0,... N—1,
and

Amax(II7S0) < 7,

where

Sk = Q+AT(Sk1 + Sk1G(v? — GT8141G) ' GT Ski1) A,

then closed-loop system has finite lo-gain< « for the class of disturbances D(7).

9.8 Conclusion

In this chapter we formulated MPC as a dynamic game. The game formulation allowed us to obtain a
separation for output feedback and prove that there exists a fixed v > 0 such that the closed-loop system
has finite l5-gain< «. Furthermore, the added cost associated with formulating MPC as a dynamic game
is negligible; the resulting problem is a quadratic program, though the optimization problem is no longer
sparse.
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However, when we characterize the admissible class of disturbances, we are confronted with an
apparent paradox: the closed-loop stability margins are equivalent to the open-loop margins. The game
formulation of MPC does not improve robustness. These results are not surprising; robustness requires
feedback (c.f. (Mayne et al. 2000)). By eschewing dynamic programming, we are unable to quantify
the feedback character of MPC. The only statement we are able to make is that MPC performs no
worse than open-loop control (c.f. (Bertsekas 1972)). This statement is the basis for the stability results
derived in Chapter 5. The initial open-loop calculation by construction drives the state into terminal
constraint set Xy. Once the state is in the terminal constraint set Xy, the local feedback policy k¢(-)
stabilizes the system. When we prove stability, we demonstrate only that the subsequent open-loop
calculations do not decrease performance. No where in the proof do we demonstrate that feedback
improves performance; rather, we show it does not degrade performance. These limitations are inherent
in all minimax formulations of MPC. The most one can achieve with a minimax formulation is risk-
sensitive open-loop control; e.g. operate the reactor away from its ignition temperature (c.f. (Ray and
Barney 1972) and (Abel and Marquardt 1998)).

MPC is a feedback policy, and practice indicates it has good robustness properties. How-
ever, the goal in robust control is to design a controller with known stability /robustness margins. As
MPC is a nonlinear control law, one quantifies the margins by including them as constraints in the
design. This procedure inevitably leads to a minimax formulation. Unless one is willing to solve a
Hamilton-Jacobi-Bellman-Isaacs inequality (Lin and Byrnes 1996), a computationally prohibitive task,
it appears impossible to quantify the robustness properties of MPC. Alternatives using LMI’s have re-
cently been proposed (Kothare et al. 1996), though these approaches mimic reference governor strategies
(c.f. (Bemporad and Mosca 1998)) and no longer explicitly use a prediction horizon (one of the appeal-
ing features of MPC). However, they optimize over linear feedback policies and the resulting properties
accrue. It is not clear with these methods what one gains in robustness or loses in performance. How to
satisfactorily resolve the issue of robustness in MPC is an open research problem.

One proposed solution is to parameterize the control with a linear feedback law (Chen et al. 1997).
By precompensating with linear feedback, the system dynamics are stabilized, thereby eliminating the
restrictive existence conditions. The cost is that precompensation introduces state constraints. In our
development we explicitly avoided state constraints. The reason is that state constraints introduce
the possibility of infeasibility: i.e. there is no solution to the minimization. As a possible outcome
in the game, we need to quantify infeasibility as a choice for the adversary. One simply cannot just
add constraints to the minimization - extra measures are necessary. One possibility is replace the state
constraints with log-barrier penalty functions. Otherwise, the minimax formulation is not properly
hedging against the worst-case scenario.

While margins are important, they are not critical for implementation. Most feedback controllers
are not robustly designed, yet their performance is excellent. Furthermore, robustly designed controllers
tend to perform poorly in practice. If robustness is an issue, the author suggests one use “ad-hoc”
techniques such as integral control or loop transfer recovery (c.f. (Doyle and Stein 1979)). One may
view these “ad hoc” techniques as forms of disturbance modeling. Integral control results from when
seeks offset free control in the presence of a constant disturbance (c.f. Davison (1973b, 1973a)) and
loop transfer recovery results when one models input disturbances. Disturbance modeling and offset free
control have been discussed only briefly in the context of MPC (e.g. (Muske and Rawlings 1993, Rawlings,
Meadows and Muske 1994)), and understanding their interaction appears to be promising direction of
research. One proposal is to understand the (convex) geometry of linear MPC and use related concepts
from (linear) geometric control theory (Wonham 1985).
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Chapter 10

Conclusions

In this dissertation we investigated the moving horizon approximation as an online optimization strategy
for the constrained process monitoring and control of nonlinear discrete-time systems. A framework was
proposed for analyzing the stability properties of the moving horizon approximation. This framework
allowed us to derive sufficient conditions for stability and propose practical algorithms for online imple-
mentation. This framework should prove useful for the future development of online optimization as a
tool for constrained estimation and control. The main contribution of the dissertation and the basis of
the proposed framework is the set of dual inequalities

j—1

Zi(p) < min Z Li(wy,vp) + Zj_n(zj_n) : z; =p

j—1
ﬂ”j—N’{wk}{c:j—N k=j—N

and

+N-1
F;(p) Z{ I}TJI,ile_l > l(uk,ok) + Fjon(@ion) © 35 =p
Uk fe=j k=j

discussed in Chapter 3. These dual inequalities constitute the core of stability results and also motivate
practical algorithms for online implementation. Though this dissertation focused primarily on analyzing
stability properties of the moving horizon approximation, practical and computational issues related to
moving horizon estimation (MHE) and model predictive control (MPC) were also investigated. These
results are briefly summarized below.

Chapter 2 investigated the issues regarding inequality constraints in process monitoring. One can
significantly improve the quality of state estimates for certain problems by incorporating prior knowledge
in the form of inequality constraints. Inequality constraints provide a flexible tool for complementing
process knowledge and as a strategy also for model simplification. Chapter 3 developed a general theory
for MHE and proposed algorithms for online implementation. Chapter 4 applied these results to the
case when the system is linear, the objectives are quadratic, and the constraints are polyhedral convex
sets.

Chapter 5 reviewed the basic theory of nonlinear MPC and discussed algorithms for online
implementation. Chapter 6 discussed linear MPC and established techniques for handling inequality
constraints active at steady state, a case that has not been treated in previous MPC theory. Through a
series of examples, we showed how this case is significant in applications.

The practicality of MPC is partially limited by the ability to solve optimization problems in
real time. This requirement limits the viability of MPC as a control strategy for large problems. One
strategy for improving the computational performance is to formulate MPC using linear programming.
Chapter 7 explored linear programming formations of MPC and demonstrated how the nonsmoothness



188

of the objective function may yield either dead-beat or idle control response. Chapter 8 presented a
structured interior-point method for the efficient solution of the optimal control problem in MPC. The
cost of this approach is linear in the horizon length, compared with cubic growth for a naive approach.
We also investigated strategies for further decomposing the problem structure in sheet and film forming
processes.

Chapter 9 addressed the issues of output feedback and robustness by formulating MPC as a
dynamic game. The game formulation allowed us to obtain a separation for output feedback and prove
that the closed-loop system has finite gain. Furthermore, the added cost associated with formulating
MPC as a dynamic game is negligible; the resulting problem is a quadratic program, though the opti-
mization problem is no longer sparse. These results, however, are extremely conservative. Limitations
of proposed strategy were discussed.

Suggestions for Future Work

There are still many unresolved issues in MHE and MPC. A brief list of some of these exciting research
problems are described below.

e The strength and weakness of MHE and MPC is the use of online optimization. For most linear
processes, the optimization problems can be reliably solved in less than 1 second on desktop
computers using standard software. However, for nonlinear processes, computational difficulties
often arise when one attempts to solve the optimization problems online. Significant progress
has been made in developing efficient and robust algorithms for generic optimal control problems
(e.g. (Biegler 1997)). However, an open question is how to incorporate these algorithms with the
suboptimal MHE and MPC strategies described in Chapters 3 and 5, where the objective is to
find a feasible solution rather a (locally) optimal solution. Only after a feasible solution is found
and time permits may the optimization algorithm proceed to search for a (local) solution. One
proposal is to tailor the algorithm described by Panier and Tits (1993) to the optimal control
problems arising in MHE and MPC.

e Monitoring

Most research in control is directed towards designing controllers with desired performance char-
acteristics. Once the controller has been commissioned, the immediate question is whether the
controller achieves and consistently maintains the desired objectives. It is difficult for the engineer
to reliably monitor and diagnose the controller directly from raw data (Kozub 1997). Consequently,
tools are needed to determine whether a controller satisfies its performance objectives and, if nec-
essary, diagnose the problem when it does not. A handful of tools exist for monitoring univariate
controllers using minimum variance estimates as a benchmark (Astrém 1970, Harris 1989, Des-
borough and Harris 1992, Qin 1998). However, these tools become unwieldy when extended to
multivariable systems. Furthermore, it is not clear whether these methods can be extended to
MPC, which is a nonlinear controller. Simple tools, therefore, are needed to effectively monitor
and diagnose multivariable control systems, in particular model predictive control. Monitoring is
still a nascent field, and it remains to be seen how these problems will be satisfactorily resolved.

e Robustness

Designing controllers robust to model uncertainty is still an open research problem. Standard
methods based on game theory, or worst cast analysis, do not appear amenable to MPC as illus-
trated in Chapter 9. Alternative techniques are required to quantify robustness in MPC. However,
it is not clear how to solve this problem systematically without resorting to dynamic programming.
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In our opinion a more promising avenue of research is to devise a set of examples, pathological if
necessary, for which MPC fails. By diagnosing specific examples, one can understand where and
why robustness problems arise in MPC and then modify the algorithm accordingly. We believe
this course of action is far more likely to yield worthwhile proposals than trying to obtain a general
solution. Currently no such examples appear to exist in the literature.

Output Feedback and Stability

A controller consists of two parts: the estimator and the regulator. One typically establishes
stability of the estimator and regulator separately and then tacitly assumes the combined system
is stable. In Chapter 9 we demonstrated using game theory how the one can prove linear MPC
is stable with output feedback. One can establish similar results also using probability theory.
However, extending these results to nonlinear systems is difficult as one needs to resolve many
technical details. An alternative and potentially simpler approach is to prove that the regulator
is stable with decaying perturbations (Luenberger 1966, Vidyasagar 1980, Scokaert, Rawlings and
Meadows 1997). These arguments require a converse Lyapunov theorem. To satisfy the conditions
of a converse Lyapunov theorem, the regulator needs to be Lipschitz continuous. However, it is
well known that MPC may yield discontinuous feedback (Meadows et al. 1995). One, therefore,
needs to develop conditions for which the regulator is Lipschitz continuous or relax the Lipschitz
condition.

Adaptive Control

Adaptive control is the “Holy Grail” of control theory. This is and will remain an exciting research
problem as it implicitly involves all of the issues discussed above.
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Appendix A

Existence

Standard existence arguments for finite-horizon optimal control problems typically employ the Weier-
strass Maximum Theorem in conjunction with coercivity arguments. These arguments rarely extend to
infinite-horizon optimal control problems. Instead, one needs to employ alternative arguments. Keerthi
and Gilbert (1985) provide existence results for infinite-horizon optimal control problems under minimal
assumptions, though the arguments are quite complicated. One may also establish existence by ana-
lyzing the problem in a weak* topology, thereby relaxing the restrictive compactness assumption with
Alaoglu’s Theorem (c.f. Luenberger (1969)). The purpose of this Appendix is to provide a “simple”
proof for existence of an infinite-horizon, constrained, linear quadratic control problem. In particular we
are concerned with conditions for the existence of a solution to the problem

®* = min  ®({ug,zr}) (A1)

{uk 7Tk }zo=o

subject to the constraints

Ty = T, Zp1 = Azy + Bug, (A.2a)
ug € U, z € X, (A.2b)

and the objective function

S ({ug,zr}) = foQ:ck + uj Ruy,
k=0

where 2 € R", ur € R™, and the sets U and X are closed and convex.

Definition A.0.1 We say the sequence {G, Ty }32, is admissible if the sequence {Uy,Tr}32, satisfies
the constraints (A.2) and ®({uy,zr}) < co.

Theorem A.0.2 Suppose the matrices QQ and R are positive definite. If an admissible solution {ax, Tk }32,
exists, then there exists a unique solution to (A.1).

Before proving Theorem A.0.2, we first prove the following Lemma.
Lemma A.0.3 Suppose the matriz () is positive definite, the set Z is a closed and convex, and
O(z1) =min{O(z) : z € Z},
z
where O(z) = 2TQz. Let 2o = 21 + A € Z. If O(23) — O(z1) < € for € > 0, then

€

IA1< @)
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Proof. We know
O(z) — O(21) =221 QA + ATQA.
By optimality, VO(z)TA > 0. Otherwise, if we consider A’ = yA for § << 1, then we have
O(z1 + A") = O(21) = VO (21)TA + y2ATQA .
—_———— N——
<0, 0(Ivll) 20, oIvII*)

Since Z is convex, there exists a feasible descent direction for v small, thereby contradicting optimality.
So, we obtain the following inequality

€>0(z1 +A)—0(z1) > ATQA > Amin| A%

This inequality implies
_c
Amin (Q)

and the lemma follows as claimed. O

> [|All;

Proof. [Theorem A.0.2] Let

oo
Boo = > T4 QT + Uy Rily.
k=0
We know by assumption that ®., < 0o, because the sequence {ty,Tr}7°, is admissible. Consider the
finite horizon problem

N
®y = min Z zi Qzy, + uj Ruy, (A.3)

{ur,we }kN=0 k=0

subject to the constraints (A.2). A solution exists to the problem (A.3) because the sequence {1, Zx 11,
is admissible for the finite-horizon problem and the cost functions are quadratic (Frank and Wolfe
1956). Furthermore, the solution is unique, because the objective function is strictly convex. Let
{uk N, Tk N}, denote the solution to (A.3). Optimality implies

By < By, < Do

Because sequence {®% '} is monotone nondecreasing and bounded above by ®, the sequence converges
to some real number ®7_.
Let

U= inf @({uk,xk})

{ur,zr}ii,

subject to the constraints (A.2). Note that M > ®}. Suppose ®% > U. This supposition implies that
there exists an € > 0 such that ®% — U > e. Choose N such that ®% — ®% < e for all N > N. We
have, therefore, the following contradiction for all N > N

€>PL By =0, —U+U—-d5>d% —U>e

Hence, ®} = U and ®} = ®*.
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Consider the Banach space I5°(R™ x R"). Let, for M > N,

{Uk\N;$k|N}kM=0 = {UklNaxklN}szo x {Omaon}kMzN-}—l'

Let 6 > 0 and choose € > 0 such that

S
[)\min (R) A )\min(Q)] -2 ’
Choose N > 0 such that, for all M > N > N,
o3 — Py <e.
It follows immediately that
N
0< ZIEZ\MQ:EMM +uj pRugyyy — B <€ (A4)
k=0
and
M
Z iEZ;‘MQZ'MM + ’UlglMR’U,HM <e.
k=N+1

By Lemma A.0.3, (A.4) implies

1)
||{Uk|M;$k|M}ch=o - {Uk|N;$k|N}§cV:0|| < BN
Likewise, we have
M
€ 2 Z xaMka\M+uz]MRuk|M7
k=N+1

vV

M
Z Amin(c2)||xk|M||2 + Amin(-R)||uk:\M||27
k=N+1

> [min(B) A Anin(Q)] [{ar a1 ki ar el |-

This inequality implies

N| O,

> ||{$k\M7uk|M};cVI:N+1”-
Combining the results, we have

||{$k\M7Uk\M}kM:o - {$k|N7Uk|N}kN:0|| <

I{@ ka0 wiinr oo — {@k) N Wi v Yool + @k ar> vk e g Il
6 0

< -4 =-=4.

-2 + 2

So, we have a Cauchy sequence in a closed subset (the feasible region) of a Banach space. Hence, there
is a unique limit point {y|oo, Uk oo } oo cONtained within the feasible region.
We know

[
* __ T T
" = E mk\oonkloo +uk|ooRuk|ooa
k=0

because the cost function is continuous. Otherwise, we would contradict ®3, — ®*. Hence, a unique
solution exists as claimed. a
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Appendix B

Duality

In this appendix, we discuss the duality between unconstrained linear quadratic control and least squares
estimation (i.e the Kalman filter). In Section 3.6, we established the dual stability condition for receding
horizon control (RHC) and moving horizon estimation (MHE). Here, we establish the duality between
the cost functions in the classic sense. The results established here are well known, though rarely are
they established explicitly. We, therefore, establish the dual relationship between linear control and
estimation using some elementary results from convex programming theory.

B.1 Some Preliminaries

Duality is a rich field that arises in many different areas. An excellent survey of duality is given by
Luenberger (1992). In this appendix we focus on duality in convex (quadratic) programming. The
interested reader is referred to Luenberger (1969), Rockafellar (1970), and Mangasarian (1994) for a
further discussion of duality.

Given two Hilbert spaces X and Y, we say the mapping A : X — Y is linear if A(z+y) = Az+Ay
for all z,y € X and A(az) = aAz for all @ € R and 2 € X and bounded if there exists M > 0 such
that ||Az|| < M||z||. We denote the set of all bounded linear mappings from X to Y as bl(X,Y"). We say
f is a bounded linear functional if it is a bounded linear map from X to R. The set of all bounded
linear functionals is itself a vector space. This space is called the dual of X and is denoted by X*. If
X = R", then it is straightforward to show X* = R"® and f*(z) = (f*,z) where f* € R".

Likewise, we can consider bounded linear functionals on the space X*. The set of all bounded
linear functionals on X™* is called the second dual and denoted by X**. As x € X defines a bounded
linear functional on X* through the definition z(f) := f(z), we have X C X**. If X is a Hilbert space,
then X = X** (i.e. Hilbert spaces are reflexive). Let X and Y be Hilbert spaces and A € bl(X,Y"). The
adjoint operator A* : Y* — X* is defined by the equation

(z, A%y") = (Az, y").

Note I* = I and A** = A. When A € R**™ then A* = AT.
Let X and Y be Hilbert spaces. Consider the following convex program

inf {f(x) : Q) =0},

zeX

where set X C X is convex, the functional f : X — R is convex, and the mapping 2 : X — Y is affine.
Now consider the primal functional

w(z) = inf {f(z) : Qz) ==2}.

zeX
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Associated with the primal function defined on Y is the dual functional

p(z%) = inf {f(z) +(G(z),27)}

zeX

defined on Y*. The following theorem relates the primal and the dual functional.

Theorem B.1.1 Suppose the functional f(-) is convex, the mapping G(-) is affine, and the set X is
convex. If

p=inf {f(z) : ) = 0}

zeX

is finite and there exists no p such that (p, G(-)) =0, then

inf {f(z) : Q(z) =0} = max(z7),

and the mazimum is achieved for some z5. If the infimum on the left is achieved by some xo € X, then
(o), 25) =0,
and xo minimizes f(z) + (Q(x), 25) for some z € X.

Proof.  The theorem is a special case of result established in Luenberger (1969) (see Theorem 1,
p225) where the generalized Slater constraint qualification has been replaced with the generalized Karlin
constraint qualification (Mangasarian 1994). O

B.2 The Dual System

The triple (A4, B,C) defines a (finite-dimensional) linear mapping G from @ = (zo,ug,... ,un_1) t0O
7= (Yo, .. -yn—_1,2n) through the equations

Try1 = Az, + Buy, Yr = Cxy.

The adjoint (dual system) G* maps from a* = (u},... ,ul,zy) to (z§,y1,-.. ,yN), where G* is defined
by the equations

zp = ATzh  + CTuj, yr = BTx;.
To prove the triple (A7, CT, BT) defines the dual system, we use the definition of the adjoint mapping:

(Gu,u*) = (u,G*u*).
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Substituting in, we obtain the following equality that establishes duality.

N-1

(@n, TN + D (Yo i)
k=0

(Gu,u")

N—1
= (Azn_1+ Bun_1,zy) + Z (Cop, upqq)
k=0
N-2
= (zn_1,ATal + C*uly) + (un_1, BTzk) + Z <$k>CTU2+1)>
k=0

N—2
(un—1,95) + (EN—1,2N_1) + Z i, CTuj 1),
k=0

N—-1

= <$07$3>+ Z<u27y2+1)7
k=0

= (4,G*a).

For a further discussion of duality in linear systems, see Callier and Desoer (1991).

B.3 Main Result

We first define the primal control problem and then establish that the estimation problem is the dual.
For simplicity, and without loss of generality, we assume that the target in the control problem is zero
and that the data are zero (i.e. {yx} = 0). The triple (4, B,C) defines the following finite-horizon
control problem

V(z) = m}n {d(m) : Q7)) =0, zo =37},

where Tn = ({zk, ex }2_o, {ur} g )» the objective function is defined as

N-1
1 1
o(m) = 3 E el Qey, + uy Ruy, + ie%PeN,
k=0

and the constraint function Q(-) is defined as

Axg + Bug — 11
Az + Buj — 2o

Arxn_1+Bun_1—zN
Qr) = Czo + e
Czi + e

Cxy_1+en_1
TN +en

It can be shown that the constraint function satisfies the constraint qualification; i.e. the rows
of Q(-) are linearly independent. If we assume X = RIV+UnxNm and

X:{ﬂ' : .73025‘},
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then the primal functional is given by
w(z) = mig {¢(m) : Qm) = z}.
TEe

As X is of finite dimension and the function ¢(-) is quadratic, we can replace the “inf” with a “min.”
One may view the primal problem as the “cost to go” in optimal control. Likewise, as we show, one may
view the dual problem as the “arrival cost” in estimation. We define the dual functional as

p(2%) = min {¢(m) + (2(m), 2")} -

TEX

We now derive an analytic expression for the dual functional ¢(-). Let 2* = ({\e}or,, {pe }oo)
and

L(m,2%) : () (Q(m), z%)

N— N-1
1 1
=5 Z et Qer + ul Ruy + eNPeN+ Z)‘Hl (Azj, — Bup — 2p11) + A2 (Z — 20) +
k=0 k=0
N-1
pr (Czp +ex) + ph(TN + en)-
k=0

Evaluating the partial derivatives, we obtain

oL(-

6u(k) = Rup+ BTy,

66() = Qek + Dk,

6ek

661\/

oL(-

6m(k) = A"XNp1 — X + CTpy,
9L0) = =AnN +DnN.

6.’L’N

If we set the partial derivatives equal to zero, then we obtain the equalities
k= —R BT \py1, exr = —Q pi, en = —P lpy.

Substituting in for uy and ey, we obtain the following expression for £(-):

N-1
¥ 1 - _ 1 _
L(m,2") = 5 > Met1BRT'B Ay +pf Q7 'k + EPEP 'pn +
k=0
N-1 N-1
)\k+1(A:ck + Bup — 1) + A (@ — 20) + Z i (Cxp + er) + ph(zn +en),
k=0 k=0
;N1 .
= 3 Z Mt BR BTNy +pfQ 'pr + Epﬁpflpzv +
k=0
N-1 N
> A Bug + 2 (AT Megr + CTp = M) + 2 (on — An) + ) phes + A0,
k=0 k=0
| N-1
= 73 ()‘£+1BR "B A1 + 94 Q pk) - §PNP oy + Mz,

=~
Il
<
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subject to the constraints

AN = DN, A = AT M1 + CTpy.

R

As Ay and {py} unique determine A, we can represent the “adjoint” system as

Q*(z") =0,
where

[ ATAN +CTpy_y — An-t ]

AT)\l + CTpo — o
Q*(z*) = BT)\N—}—UN
BTAN_1 +un_1

BT)\l + v
If we redefine z = ({pr }reg, {Ak> Uk Hhey ), then we have
ple") = {=°(") + N7 5 () = 0},

where

3*(2*) =

N | =

N—1
_ _ 1 _

E , (U19T+1R Yokt +PZQ lpk) + EP%P 'pn.

k=0

Associated with the dual functional is the dual optimization problem (see Theorem B)
max ¢*(z*).
o

If we make the substitutions j = N — k, 27 = An_, and v} = pNy_1_, then

N-1
1 1
H;@xgo*(z*) = —rr;in 3 Z y;-‘TRfly;‘ + u;-‘TQfluj + ixaTPfla,ﬁ -z,
=0
subject to the dual (adjoint) system
T = ATm’; + C’Tu;f, y; = BT:c;f.

From the derivation of the Kalman filter (see Appendix D), we can recast the dual problem as

1 - -
min ~2% Py'zh — 2¥ 7,
zh 2

where
Pit1 = CQC™ + AT (P, — P.B(R+ BTP,B)'BTP;) A,
subject to the initial condition Py = P. Solving the minimization analytically, we obtain

* —
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Hence, the dual problem is equivalent to

n}z@xcp(z*) = n;ln {®*(z*) : Q*(z*) =0,2y = PnZ}.
Recall the triple (A, B, C) defines the estimation problem

Z(z) = mgn {0(p) : E(u) =0, zy =T},

where 1 = ({z}2 o, {wk, vk} hoy ), the objective is defined as

N
O(p) := ZwkTQflwk + v R o + ol T g,
k=0

and the constraint function X(-) is defined as

AZ‘O — B’w(] — I
AJJl - B’U)l — X2

Azn_1 + Bwny_1 — TN
C.Z'O + Vo
C.Z'l + U1

Cxn +oun

The dual problem, consequently, defines the adjoint estimation problem. The structure of the dual
problem is equivalent in structure to the estimation problem except that the triple (A7,C”T, BT) now
defines the problem. In particular, the “cost to go” in the control problem is equal to the adjoint “arrival
cost” in estimation. This is our duality,

Let Z*(-) denote the arrival cost for the adjoint system (AT, CT, BT), then

V(z) = Z°(Pn7),

= #'PyPy'Pyz = 7" Pyi.

We can also establish that the estimation problem is the dual of the control problem. If we let V*(-)
denote the cost to go for the adjoint system (AT, CT, BT), then

Z(z) = V(I '2)
= Oz 'z = 3710, 7,
where
M1 = BQBT + A (T, - CT(R + CTI,CT) 1O, AT,

subject to the initial condition IIy = II. Hence, the arrival cost is equal to the adjoint cost to go.

B.4 The Riccati Equation

The duality between control and estimation is well known from the properties of the associated Riccati
equations. For control, the cost to go is given by

V(z) = T Py,
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where the triple (A, B, C) defines the Riccati equation
Pet1 =CTQC + AT (P, — P.B" (R + B"P,B)BP;) A,
subject to the initial condition Py = P. Likewise, the arrival cost in estimation is given by
V(z) =z TINE,
where the triple (4, B, C) defines the Riccati equation
i1 = BQBT + A (I; - PC(R + CTI,CT)CTTL,,) AT,

subject to the initial condition Py = II. One obtains, by inspection, the control Riccati equation from
estimation Riccati equation if one uses the triple (AT, CT, BT). Likewise, the estimation Riccati equation
is equal to control Riccati equation if one uses the triple (A7, CT, BT). Hence, the estimation and control
Riccati equations are dual to each other.
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Appendix C

A derivation of H,, control

C.1 Derivation of the H, regulator

In this section we derive the solution to the dynamic game

VN(z) = min  max Vy(zo,{us}, {wk})
{ur oot {wn oy
where
N-1
VN (zo, {ur}, {wr}) := Z zi Q. + uj Ruy, + 8 Prn — y2wi wy
k=0
subject to the constraints
rg = T
Trr1 = Az + Buyp + Guy.

First consider the following dynamic game

Vi(zo) = minmax Vi (zg,uo,wo)
o o

subject to the state equation
1 = Az + Bug + Gwyg.
Substituting the state equation into the term z7 Pz;, we obtain the following expression
tTPzy = (Axo+ Bug + Guwo)T P(Azy + Bug + Guwy),

= zlATPAzy + ul BT PBug + wl GT PGw, +
2wy GT P(Azo + Buog) + 2uj BT P Ax.

Substituting into the cost function, we obtain the new expression in terms of zg, ug, and wo:

Vi(zo, up,wo) = a:g(Q + ATPA)mo + ug(R + BTPB)uO + wOT(GTPG — v wg +
2wa GT P(Axo + Buo) + 2ug BT P Axy.

Solving the maximization first, we have the following expression for the partial derivative of V;
with respect to wy.

Vi (o, uo,wo)

D, = (GTPG — v*)wg + GTP(Azg + Buy).
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In order for the solution to be well-posed, v needs to satisfy the matrix inequality
(v?* —= GTPG) > 0. (C.1)

Otherwise, the cost function is not strictly concave in wg. Assuming v satisfies (C.1), we can solve for
the worst-case disturbance:

(@Vl (o, uo, wo)

5 = 0) = w) = (v* = GTPG)"'GT P(Azy + Buy).
0

Substituting in for wg, we have
Vi(wo,u0,wg) = x5 (Q+ ATPA)wo +ug (R+ BT PB)ug +
(Azo + Bug)TPG(GT PG — %) 'GT P(Axg + By) +
2(Azy + Bug)T PG(v* — GTPG) 'GT P(Azy + By) +
2ul BT PAxy,
= .'L'g'(Q + ATPA)ZU() + ug(R + BTPB)U() +
(Azo + Bug)TPG(v* — GTPG)'GT P(Axg + By) +
2ul BT PAuxy.
Rearranging the cost function yields
Vi(wo,uo,wy) = x2(Q+ ATPA)wo +ul (R+ BYPB)uo +
ul BTPG(v* — GTPG)'GT PBuy + s AT PG(v* — GT PG) 'GTPAxy +
2u BT (PG(y* = GTPG)"'G" P + P) Aux,.
Collecting terms yields the following expression for the cost function:
V(zg) = =3 (Q+ AT (P+PG(y* - G"PG)'G"P)GTP) A) zo +
uy (R+B" (P+ PG(y> - G"PG)'G"P) B) uo +
2ug BT (PG(v* - GTPG)'G* P + P) Ax,.

We have the following identity using the matrix inversion lemma:
1 -1
PG(y*-G"PG)"'G"P+ P = (P—l - —2GGT> .
g

Taking the partial derivative of Vi (zo, ug, wg) with respect to ug yields

OVi(zo, uo, wg)

duo = (R+B" (P+PG(y ~G"PG)™'G"P)™'G"P) B) uo

BT (PG(v* - GTPG)™'G" P + P) Auy,,
-1
= <R+ BT (P—l - %GGT) B) ug +

1 -1
B (P—l - —ZGGT) Azg.
8
Solving the minimization, we obtain the following expression the optimal input

(3‘/1(31&0,”0;1113)

sl o) —

-1
1 -1 1 -1
ul = — <R+ BT (Pl — —GGT> B) BT (Pl — ?GGT> Azy.

72
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Using the matrix inversion lemma once again yields

-1 -1 —1
<R+ BT (P—l - %GGT> B) BT (P—l - %GGT> =
gt g

-1
R™'BT ((P—1 - %GGT) + BTR—IB> ,

-1
= R'BT <<I+ (BTR'B - %GGT)P) P‘1> ,

-1
R7'BTP (1 +(B"R7'B - %GGT)P> .
g

Hence, we have
1 -1
uy = -R'BTP (I +(B'R'B- ?GGT)P) Azy.

Recall, we have the following expression for the worst-case disturbance:

wy = (v =GTPG)~'GT P(Axo + Buy)
= (Y-G'PG)'G*P-

-1
(I —BR'BTP (I +(BTR7'B - %GGT)P) ) Agzy.
v

Using the matrix inversion lemma, we have the following identity:

1 1
(v -GTPe)7'GTP = ?GT(P_I — ?GGT)_I,

1 1
= —_GTP(I--=GGTP)™.
,},2 ( ,YQ )

Making the following definition
1 T
D:=(I- 72G’G P),

we obtain the following identities:

-1
I-BR'BTP (BTR—IBP +1- %GGT)P>
¥

= I-BR'B'P(B'R'BP+D) ",
— I-BR'B"PD ' (B'R'BPD ' +1) ',
= (I+B"R7'BPD™")7,

where the last inequality follows from the matrix inversion lemma. We have also the following identity:

D Y1+ BTR'BPD™")"' = (D+BTR'BP)™!

-1
I+(B"R'B - iGGT)P.
,-),2
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So, we have the following expression for the worst-case disturbance:

1 .
wy = GTPD™ (1-BR'B"P(B"R™'BP+D) ) Auo,
1 T Tp—1 1 T -
v v

Substituting ug in V(zg,u, wg), we obtain
1
Vilzg) = mg’ (Q —}—AT(P*I _ ?GGT)IA) Zo —
1 1 -
zg AT(P7! - ?GGT)_lB (R+ BT(P7! - ?GGT)—lB) :
BT (P~ - %GGT)—leO.
Y
Making the definition
W:=(P'- 7—GGT),

yields the following expressions for the optimal cost:

Vi(zo) = 2y (Q+AT (W' =W 'B(R+B"W™'B)"'BTW™) A) z,,
= x5 (Q+AT(D+ BR'BT) ' A) x,

1 -1

= gzl (Q + AT ((P—1 - ?GGT) + BR—lBT> A) To,
1 —1

= o7 (Q + ATP (I + (BR'BT - ?GGT)P) A> o,

where the last inequality follows from the matrix inversion lemma.

We can extend the above result using standard dynamic programming arguments.

P =Q+ AP, (I + (BR™'BT - 7—12GGT)P,€> - A,
subject to the initial condition Py = P. If
v -GTP,G >0
forall k=0,...,(N —1), then
Vi (zo) = :cOTPN:cg.
and

1 -1
u; = —R'BTPy (I+ (BTR'B — ?GGT)PN) Az,

1 1 !
wy = ?GTPN <I+ (BTR'B — ?GGT)PN> Axy.

Let



C.2 Derivation of H,, Estimator
Consider the problem

Zn(2) max  Zn(xo,{wk})
woa{wk}::;_ol

where
N—1
Zn(zg, {wy}) := Z o Qzy, — v (Wi wy, + v v, + (w0 — 7) "I (20 — 7))
k=0
subject to the constraints
Tr+1 = Azp + Bug + Guy,
yr = Czp + Eug,
rN = Z.

where the matrix E is nonsingular.
First consider the problem

max Z1 (330, w(])
Zo,Wo

subject to the constraints
x1 = Axy + Bug + Gwg, yr = Cxp + Bwy, ©1 = 2.
This problem is equivalent to
rrggn vivg + (xzo — )T (2o — &) — %x{@wo
Substituting the model equation, we obtain
rr;'tn (yo — Cz0)(EET) ™ (y — Cxo) + (w0 — 2)TTT ™ (z0 — 7) — %x%@mo
Rearranging and collecting terms, we obtain the following equivalent minimization
min zf (CT(EET)lc +II 1t — % ) zo — 2 gtz — 2d CT(EET)1y,.
If v satisfies the matrix inequality
YO —Q >0,
then the problem admits the solution
By = (CT(EET)—lc +I" -
-1
= (CT(EET)—lc +It - iQ) X

((CT(EET)l(J +It — %Q) T+ %Q:T: + C(EE")Y(yo - C’i’)) ,

-1
= I+ (CT(EET)—IC +I7t — %Q) (%Qﬁ + C(EE") ™ (yo — Ca‘:)) )

207
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Now consider the cost for an arbitrary z:
Zyo(x) = (yo—C2)"(BE")  (yo — Cz) + (z —2) "I~ (& — 2) — v—wTQw,
= (yo— Clz + &0 — %)) (EE") "(yo — C(z + &0 — &0)) +
(x + &0 — 20 — Z) (2 + &0 — &0 — T) —
%(ﬂf — &0 + #0)TQ(z — &0 + £0),
= (y—Cizo— CA2x)T(EET) Y(y — Ciog — CAz) +
(Azx+ g — )T YAz + 39 — ) + %(Aw + 20)TQ(Ax + i),
= (yo — Czo)(EE") Y (y — Ci¢) + AzTCT(EET)"'CAz —
202CT(EET) Y (yo — Co) + Az Az + (20 — )T Y(&0 — ) +
2AzIT (29 — Z) — %AmTQA:c - %@S’Q;ﬁo - %AmTQi'O.
By optimality we know
M5 (30 — 2) — CTR™(yo — Co) — %Qﬁro ~0.
Hence,
Zuo(o) =7*(a — a0)7 (CTEET) O +17 = Q) (o - 0) — o,
where
a=3"Qs0 — 7 ((yo — C20)"(EET)(y — Co) + (80 — 7)1 (&0 — 7)) .

Using the optimality principle, we know

Vi(e) = o~ max wfuo+ (2~ 20)" (cT(EET)—lc Frt - %Q) (o= ).
Let
Y :=CT(EE")'Cc+0~ ' - %Q.
Constructing the Lagrangian, we have
L1 =wlwo + 72 (x — 20)TS7 Nz — 20) + A\ (Az + Gwg — 2).

The optimality conditions are

wo + GT)\() =0,
VI @ — 20) + AT = 0.

Eliminating A¢ and using the model equation, we obtain
wo = G (AS AT + GGT) ' (2 — Aio)
and

(o — Bo) = B AT (AN'AT + GGT) ™ (2 — Asy).
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Substituting in for x¢ and wg, we obtain
Vi(2) = a —v2(z — Ado) (AX AT + GGT) ™' (2 — A#o) + a.

If we make the definition

-1
m=A (CT(EET)_10+ ot — %Q) AT + GG,
Y
then
Vi(2) = a —~*(z — Azo)II (2 — Agy).

To complete the derivation of the estimator, we need only to employ forward dynamic programming and
the results we derived above. If v satisfies the matrix inequality

72H;1 -Q>0
for k=0,...,(N —1), then
Vn(z) = ay — 7% (z — :fN)HEI(z —Ip)

where oy, is a positive constant,

-1
My =A (CT(EET)‘lC + It - %Q) AT + GGT,

2

and

1\ '/1
Tpy1 = ATy + Bup + A (CT(EET)_lc + 10— ?Q> (?Qi‘k +C(EET) (yx — Cif?k)) ;

subject to the initial conditions IIo = IT and Zo = Z.
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Appendix D

The Kalman Filter

In this appendix we derive the Kalman filter using dynamic programming and block factorization. The
latter approach may be used to extend the results of Chapter 8 to moving horizon estimation.

We can formulate the Kalman filter as the solution to the following least squares estimation
problem

-1

¢r= min__ Z wiQ twy, + vF R Yug + (w0 — 0) "I (o — Z0)
o, {wk}k;o k=0

subject to the model equation

Thy1 = Az + Guy,
Cxy + vg.

Yk

Dynamic Programming
We proceed inductively. Let T = 1 and consider the problem
acronifulo ng_lwo + UOTR_IUO + (zo — i:O)THal(mo — &).
This problem is equivalent to the minimization
n;ion UOTR_lvO + (zg — :EO)THO_I(xg — Z9)-

The optimality conditions for this problem are

(CTR'C +15") 2o = CTR 'yo + Iy ' 39,
and the optimal solution is

5= (CTR'C+ T3 ™ (CTR o + 115 d0) .

Using the matrix inversion lemma, we have equivalent solution

zh — do = MoCT (R 4+ CTICT) " (yo — Cip).
So, we obtain the solution

& = Ao + AIL,CT (R + CTICT) = (yo — Cio).
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Let us now consider the cost associated with an arbitrary xz¢ and wq:

(ﬁ(.%’o,w()) = wg’Qflwo + ’l)g—'R711)0 + (."L'o — ﬁo)TH71($0 — .’IAL'()),

wg Q™ wo + (yo — C(xg + A))TR™ (yo — Clag + A)) + (25 + A) I (a5 + A),

where A = zp — z§. We can rearrange the above expression as follows
P(wo,m0) = wyQ ‘wo+ AT(CTR'C+T5MA +
AT (CTR Yy + Ty 30 — (CTR'C + 105" ) mo) +
(yo — Cz*)TR™ (yo — Cz*) + (25 — £0) Ty * (25 — &o)-
Using the optimality conditions, we obtain
¢(z0, wo) = wi R *wo + AT(CTRTIC + Hal)A + ¢1.
Now consider the problem

Zi(z) = zrOniE0 {wg Q@ ‘wo +vi R tvo + (w0 — &0) Ty (zo — £0) : 71 = 2} .

This problem is equivalent to
Zl(z) = min {¢1(m0,w0) X = z}_
Zo, Wo

The optimality conditions for this problem are

Q 'wo + GTA =0,
(CTRIC + 10y ") (xo — xf) + ATA =0,
Az + Gwy = 2.

Solving for z¢, we obtain
i1 —2z=ACTR'C+ 15" AT A — Guy.
Solving for wg, we obtain

g1—2 = (A(CTRIC+T,") AT + GQGT) A,
= (GQGT + A(Ily — MyCT (R + CT,CT) ™' CTy) AT) A

If we make the definition
I, = GQGT + A(Ily — II,CT(R + CI,CT)~1CII,) A7,
then

Qile = GTI_I*I(Z — i‘l)7
(CTR1C +TIgY ) (zo — 23) = ATTI (2 — #41).

Substituting in these expressions, we obtain

Z1(2) = (z = 1) T (2 = 1) + ¢1.
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Now consider arbitrary T" and assume
Zr_1(2) = (z — 7-1) T (2 — B7-1) + P71,

where II;, and Zj, are given by the recursive expressions

My = GQGT + A(IT, — II,CT(R + CI,CT)~' CII,) AT, (D.1)
and

Fppr = Adp + AILCT(R + CIL,CT) " (yp — Ciy).
Using principle of optimality and the induction hypothesis, we know
r=_ min wh_ Q  wr_y +vE_ R vr_y + (@71 — d7—1)TT7L (wr_1 — &7-1) + 71

i1 = Adr 1 + AllrCT (R + Clr 1 CT) Yyr_1 — Cir_1)

and
2r(2) = (z — #r) ;' (2 — 1) + ¢,

where II7 is given by (D.1).

Batch Least Squares
Consider T' =1 and the equivalent problem
minvd R g + (20 — 20) Ty H (w0 — #0)-
zo

The optimality conditions are

Hal CT ) Halii'o
c —I A = Yo
—-I R Vo 0

Block elimination gives:
2o = (Mg + CTR™'C) ' (Tlg &0 + CT R 'yo).
From Matrix Inversion Lemma, we have the following equalities;

Iyt +ctr o)™ Iy — MyC* (R + CT,CT) 1 CQ,,
(T, + CTR'C)'CTR™ = M,CT(CT,CT + R)~!.

This gives us the well known result for the Kalman filter:

2o = %o + HoCT(CT,CT + R) ™ (yo — Co).
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Now consider the case for T' = 2, which we use to generalize for all T. The solution of this

problem is again obtained from the Karush-Kuhn-Tucker conditions:

[t CT ATCT 101z ] [ Hytae ]
C -1 Ao Yo
-I R! Vo _ 0
Q' GTcT wo | 0
CA CG -1 A1 Y1
I —I R1 1L v | i 0

Block elimination of the first stage gives:

I, * ArcT o I, ' &
CA -CGQGTCT -I M| = m
I R! 1 0

If we make the definition
I, = GQGT + A(Tly — Tl,CT(CTL,CT 4+ R)~'CTy) AT
and the variable transformation
T = Azo — GQGTCT )y,

then can we obtain the following equivalent representation

nt or To ;1 C Az
C I /\1 = Y1
-I R 1 0

The second form is more appealing from a statistical view because it allows us to put our solution in a
recursive framework. Using the results from 7' = 1, we obtain the following solution:

z1 = Azg + PL.CT(CP.CT + R) L (yy, — CAxy)

If we define Z; := Axy and &2 := Az then we obtain the desired result. It is straightforward to extend

the solution for T' > 2.
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